Skip to main content

Advertisement

Log in

Establishment and preliminary application of nanoparticle-assisted PCR assay for detection of Cryptosporidium spp.

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cryptosporidium is an important intestinal protozoan parasite that causes diarrhoea in humans and animals. To rapidly and specifically detect Cryptosporidium spp., we designed a pair of primers based on the small subunit ribosomal RNA (SSU rRNA) gene of Cryptosporidium spp. to be used in a new nanoparticle-assisted PCR (nano-PCR) assay. The minimum detectable concentration (1.02 pg) of this nano-PCR was 10 times more sensitive than conventional PCR using the same primer pair. The DNA samples of C. parvum, C. baileyi, C. xiaoi, C. ryanae, and C. andersoni were successfully detected by the nano-PCR. No amplifications were evident with DNA samples of some common intestinal pathogens, including Eimeria tenella, Blastocystis sp., Giardia lamblia, Enterocytozoon bieneusi, and Balantidium coli. To validate the clinical usefulness of the novel nano-PCR, a total of 40 faecal samples from goats, camels, calves, and chickens were examined. The positive rate of Cryptosporidium spp. was 27.5% (11/40), which was consistent with that of an established nested PCR. These results indicate that the novel nano-PCR assay enables the rapid, specific, and accurate detection of Cryptosporidium infection in animals. The findings provide a technical basis for the clinical diagnosis, prevention, and control of cryptosporidiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeyemo FE, Singh G, Reddy P, Stenström TA (2018) Methods for the detection of Cryptosporidium and Giardia: from microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 184:15–28

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SA, Karanis P (2018) Comparison of current methods used to detect Cryptosporidium oocysts in stools. Int J Hyg Environ Health 221(5):743–763

    Article  PubMed  Google Scholar 

  • Ali Z, Jin G, Hu Z, Wang Z, Khan MA, Dai J, Tang Y (2018) A review on nanoPCR: history, mechanism and applications. J Nanosci Nanotechnol 18(12):8029–8046

    Article  CAS  PubMed  Google Scholar 

  • Balatbat AB, Jordan GW, Tang YJ, Silva J Jr (1996) Detection of Cryptosporidium parvum DNA in human feces by nested PCR. J Clin Microbiol 34(7):1769–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bones AJ, Jossé L, More C, Miller CN, Michaelis M, Tsaousis AD (2019) Past and future trends of Cryptosporidium in vitro research. Exp Parasitol 196:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo VDS, Santana BN, Ferrari ED, Nakamura AA, Nagata WB, Nardi ARM, Meireles MV (2018) Detection and molecular characterization of Cryptosporidium spp. in captive canaries (Serinus canaria) using different diagnostic methods. Rev Bras Parasitol Vet 27(1):61–66

    Article  PubMed  Google Scholar 

  • Chalmers RM, Katzer F (2013) Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol 29(5):237–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalmers RM, Campbell BM, Crouch N, Charlett A, Davies AP (2011) Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK. J Med Microbiol 60(Pt 11):1598–1604

    Article  PubMed  Google Scholar 

  • Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA Jr, Priest JW, Roos DS, Striepen B, Thompson RC, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis 15(1):85–94

    Article  PubMed  Google Scholar 

  • Current WL, Reese NC, Ernst JV, Bailey WS, Heyman MB, Weinstein WM (1983) Human cryptosporidiosis in immunocompetent and immunodeficient persons. Studies of an outbreak and experimental transmission. N Engl J Med 308(21):1252–1257

    Article  CAS  PubMed  Google Scholar 

  • Gabriel S, Rasheed AK, Siddiqui R, Appaturi JN, Fen LB, Khan NA (2018) Development of nanoparticle-assisted PCR assay in the rapid detection of brain-eating amoebae. Parasitol Res 117(6):1801–1811

    Article  PubMed  Google Scholar 

  • Garcia LS, Shimizu RY (1997) Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J Clin Microbiol 35(6):1526–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerace E, Lo Presti VDM, Biondo C (2019) Cryptosporidium infection: epidemiology, pathogenesis, and differential diagnosis. Eur J Microbiol Immunol (Bp) 9(4):119–123

    Article  CAS  Google Scholar 

  • Hawash Y (2014) Evaluation of an immunoassay-based algorithm for screening and identification of Giardia and Cryptosporidium antigens in human faecal specimens from Saudi Arabia. J Parasitol Res 2014:213745

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong S, Kim K, Yoon S, Park WY, Sim S, Yu JR (2014) Detection of Cryptosporidium parvum in environmental soil and vegetables. J Korean Med Sci 29(10):1367–1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang HS, Tsai CL, Chang J, Hsu TC, Lin S, Lee CC (2018) Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin Microbiol Infect 24(10):1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Shaik JS, Grigg ME (2018) Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop 184:1–14

    Article  CAS  PubMed  Google Scholar 

  • Khurana S, Chaudhary P (2018) Laboratory diagnosis of cryptosporidiosis. Trop Parasitol 8(1):2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang ZD, Huang SY, Zhu XQ (2015) Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Madadi S, Mahami-Oskouei M, Rafeey M, Spotin A, Aminisani N, Mahami-Oskouei L, Ghoyounchi R, Berahmat (2020) Comparative evaluation of Cryptosporidium infection in malnourished and well-nourished children: parasitic infections are affected by the interaction of nutritional status and socio-demographic characteristics. Comp Immunol Microbiol Infect Dis 68:101406

    Article  PubMed  Google Scholar 

  • Mammeri M, Chevillot A, Chenafi I, Thomas M, Julien C, Vallée I, Polack B, Follet J, Adjou KT (2019) Molecular characterization of Cryptosporidium isolates from diarrheal dairy calves in France. Vet Parasitol Reg Stud Rep 18:100323

    Google Scholar 

  • Miller CN, Panagos CG, Mosedale WRT, Kváč M, Howard MJ, Tsaousis AD (2019) NMR metabolomics reveals effects of Cryptosporidium infections on host cell metabolome. Gut Pathog 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Plutzer J, Lassen B, Jokelainen P, Djurković-Djaković O, Kucsera I, Dorbek-Kolin E, Šoba B, Sréter T, Imre K, Omeragić J, Nikolić A, Bobić B, Živičnjak T, Lučinger S, Stefanović LL, Kučinar J, Sroka J, Deksne G, Keidāne D, Kváč M, Hůzová Z, Karanis P (2018) Review of Cryptosporidium and Giardia in the eastern part of Europe, 2016. Euro Surveill 23(4):16–00825

    Article  PubMed Central  Google Scholar 

  • Priyanka B, Patil RK, Dwarakanath S (2016) A review on detection methods used for foodborne pathogens. Indian J Med Res 144(3):327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pumipuntu N, Piratae S (2018) Cryptosporidiosis: a zoonotic disease concern. Vet World 11(5):681–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman A, Sarwar Y, Raza ZA, Hussain SZ, Mustafa T, Khan WS, Ghauri MA, Haque A, Hussain I (2015) Metal nanoparticle assisted polymerase chain reaction for strain typing of Salmonella Typhi. Analyst 140(21):7366–7372

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Hijjawi N (2015) New developments in Cryptosporidium research. Int J Parasitol 45(6):367–373

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Fayer R, Xiao L (2014) Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141(13):1667–1685

    Article  PubMed  Google Scholar 

  • Ryan U, Zahedi A, Paparini A (2016) Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 38(9):535–547

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Hijjawi N, Xiao L (2018) Foodborne cryptosporidiosis. Int J Parasitol 48(1):1–12

    Article  PubMed  Google Scholar 

  • Squire SA, Ryan U (2017) Cryptosporidium and Giardia in Africa: current and future challenges. Parasit Vectors 10(1):195

    Article  PubMed  PubMed Central  Google Scholar 

  • Striepen B (2013) Parasitic infections: time to tackle cryptosporidiosis. Nature 503(7475):189–191

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Bossche D, Cnops L, Verschueren J, Van Esbroeck M (2015) Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of Giardia lamblia, Cryptosporidium spp and Entamoeba histolytica in feces. J Microbiol Methods 110:78–84

    Article  PubMed  Google Scholar 

  • Van Lieshout L, Roestenberg M (2015) Clinical consequences of new diagnostic tools for intestinal parasites. Clin Microbiol Infect 21(6):520–528

    Article  PubMed  Google Scholar 

  • Wanzhe Y, Jianuan L, Peng L, Jiguo S, Ligong C, Juxiang L (2015) Development of a nano-particle-assisted PCR assay for detection of duck tembusu virus. Lett Appl Microbiol 62(1):63–67

    Article  PubMed  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124(1):80–89

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Feng Y (2017) Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 8–9:14–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Escalante L, Yang C, Sulaiman I, Escalante AA, Montali RJ, Fayer R, Lal AA (1999) Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl Environ Microbiol 65(4):1578–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Alderisio KA, Jiang J (2006) Detection of Cryptosporidium oocysts in water: effect of the number of samples and analytic replicates on test results. Appl Environ Microbiol 72(9):5942–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Feng Y, Chen XM (2014) Non-coding RNAs in epithelial immunity to Cryptosporidium infection. Parasitology 141(10):1233–1243

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the grants from the National Key Research and Development Program of China (Grant No. 2017YFD0501305), National Natural Science Foundation of China (32072890), and the Open Funds of the State Key Laboratory of Veterinary Aetiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (SKLVEB2020KFKT015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Ke Song or Guang-Hui Zhao.

Ethics declarations

Ethics approval

Our research was conducted strictly in accordance with the Guide for the Care and Use of Laboratory Animals of the Ministry of Health, China, and the protocol was reviewed and approved by the Research Ethics Committee of Northwest A&F University, Yangling, China. Permission was obtained from animal owners prior to faecal collection.

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Lihua Xiao

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 28 kb)

ESM 2

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, YL., Wang, Y., Lai, P. et al. Establishment and preliminary application of nanoparticle-assisted PCR assay for detection of Cryptosporidium spp.. Parasitol Res 120, 1837–1844 (2021). https://doi.org/10.1007/s00436-021-07101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07101-2

Keywords

Navigation