Skip to main content
Log in

Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host’s immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15I) or type II PRU strain (GRA15II). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15I and GRA15II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloatti A, Gupta S, Gualdrón-López M, Nguewa PA, Altabe SG, Deumer G, Wallemacq P, Michels PA, Uttaro AD (2011) Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei. Biochem Biophys Res Commun 412(2):286–290

    Article  PubMed  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barragan A, Sibley LD (2003) Migration of Toxoplasma gondii across biological barriers. Trends Microbiol 11(9):426–430

    Article  PubMed  CAS  Google Scholar 

  • Boothroyd JC, Grigg ME (2002) Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Curr Opin Microbiol 5(4):438–442

    Article  PubMed  Google Scholar 

  • Bougdour A, Durandau E, Brenier-Pinchart MP, Ortet P, Barakat M, Kieffer S, Curt-Varesano A, Curt-Bertini RL, Bastien O, Coute Y, Pelloux H, Hakimi MA (2013) Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 13(4):489–500

    Article  PubMed  CAS  Google Scholar 

  • Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA (2013) A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J Exp Med 210(10):2071–2086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cannella D, Brenier-Pinchart MP, Braun L, van Rooyen JM, Bougdour A, Bastien O, Behnke MS, Curt RL, Curt A, Saeij JP, Sibley LD, Pelloux H, Hakimi MA (2014) miR-146a and miR-155 delineate a microRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Rep 6(5):928–937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dang CV, Lewis BC (1997) Role of oncogenic transcription factor c-Myc in cell cycle regulation, apoptosis and metabolism. J Biomed Sci 4(6):269–278

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K (1999) Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253(1):63–77

    Article  PubMed  CAS  Google Scholar 

  • Dubremetz JF (1998) Host cell invasion by Toxoplasma gondii. Trends Microbiol 6(1):27–30

    Article  PubMed  CAS  Google Scholar 

  • Fox BA, Falla A, Rommereim LM, Tomita T, Gigley JP, Mercier C, Cesbron-Delauw MF, Weiss LM, Bzik DJ (2011) Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. Eukaryot Cell 10(9):1193–1206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco M, Shastri AJ, Boothroyd JC (2014) Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates. Eukaryot Cell 13(4):483–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gold DA, Kaplan AD, Lis A, Bett GC, Rosowski EE, Cirelli KM, Bougdour A, Sidik SM, Beck JR, Lourido S, Egea PF, Bradley PJ, Hakimi MA, Rasmusson RL, Saeij JP (2015) The Toxoplasma dense granule proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole. Cell Host Microbe 17(5):642–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Gov L, Karimzadeh A, Ueno N, Lodoen MB (2013) Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. mBio 4(4):e00255–e00213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gratraud P, Huws E, Falkard B, Adjalley S, Fidock DA, Berry L, Jacobs WR Jr, Baird MS, Vial H, Kremer L (2009) Oleic acid biosynthesis in Plasmodium falciparum: characterization of the stearoyl-CoA desaturase and investigation as a potential therapeutic target. PLoS One 4(9):e6889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hakimi MA, Olias P, Sibley LD (2017) Toxoplasma effectors targeting host signaling and transcription. Clin Microbiol Rev 30(3):615–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe DK, Sibley LD (1995) Toxoplasma gondii comprises 3 clonal lineages: correlation of parasite genotype with human-disease. J Infect Dis 172(6):1561–1566

    Article  PubMed  CAS  Google Scholar 

  • Howe DK, Summers BC, Sibley LD (1996) Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii. Infect Immun 64(12):5193–5198

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hung YY, Lin CC, Kang HY, Huang TL (2017) TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder. Brain Behav Immun 59:265–272

    Article  PubMed  CAS  Google Scholar 

  • Jensen KD, Wang Y, Wojno ED, Shastri AJ, Hu K, Cornel L, Boedec E, Ong YC, Chien YH, Hunter CA, Boothroyd JC, Saeij JP (2011) Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 9(6):472–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Li FC, Elsheikha HM, Sun MM, Zhu XQ (2017a) Identification of host proteins interacting with Toxoplasma gondii GRA15 (TgGRA15) by yeast two-hybrid system. Parasit Vectors 10(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Li FC, Zhou CX, Zhu XQ (2017b) Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol 176:89–98

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Wang ZD, Huang SY, Zhu XQ (2015) Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8:292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma JS, Sasai M, Ohshima J, Lee Y, Bando H, Takeda K, Yamamoto M (2014) Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. J Exp Med 211(10):2013–2032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercier C, Cesbron-Delauw MF (2015) Toxoplasma secretory granules: one population or more? Trends Parasitol 31(11):604

    Article  PubMed  Google Scholar 

  • Morgado P, Sudarshana DM, Gov L, Harker KS, Lam T, Casali P, Boyle JP, Lodoen MB (2014) Type II Toxoplasma gondii induction of CD40 on infected macrophages enhances interleukin-12 responses. Infect Immun 82(10):4047–4055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niedelman W, Gold DA, Rosowski EE, Sprokholt JK, Lim D, Farid Arenas A, Melo MB, Spooner E, Yaffe MB, Saeij JP (2012) The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS Pathog 8(6):e1002784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozaki E, Campbell M, Doyle SL (2015) Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 8:15–27

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ramakrishnan S, Docampo MD, Macrae JI, Pujol FM, Brooks CF, van Dooren GG, Hiltunen JK, Kastaniotis AJ, McConville MJ, Striepen B (2012) Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. J Biol Chem 287(7):4957–4971

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan S, Docampo MD, MacRae JI, Ralton JE, Rupasinghe T, McConville MJ, Striepen B (2015) The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol Microbiol 97(1):64–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramakrishnan S, Serricchio M, Striepen B, Bütikofer P (2013) Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 52(4):488–512

    Article  PubMed  CAS  Google Scholar 

  • Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci U S A 108(23):9625–9630

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosowski EE, Lu DN, Julien L, Rodda L, Gaiser RA, Jensen KD, Saeij JP (2011) Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med 208(1):195–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314(5806):1780–1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seeber F (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr Drug Targets Immune Endocr Metabol Disord 3(2):99–109

    Article  PubMed  CAS  Google Scholar 

  • Shapira S, Speirs K, Gerstein A, Caamano J, Hunter CA (2002) Suppression of NF-kappaB activation by infection with Toxoplasma gondii. J Infect Dis 185(Suppl 1):S66–S72

    Article  PubMed  CAS  Google Scholar 

  • Sibley LD, Boothroyd JC (1992) Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359(6390):82–85

    Article  PubMed  CAS  Google Scholar 

  • Su C, Khan A, Zhou P, Majumdar D, Ajzenberg D, Dardé ML, Zhu XQ, Ajioka JW, Rosenthal BM, Dubey JP, Sibley LD (2012) Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Natl Acad Sci U S A 109(15):5844–5849

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95(21):12352–12357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JL, Li TT, Elsheikha HM, Chen K, Zhu WN, Yue DM, Zhu XQ, Huang SY (2017) Functional characterization of rhoptry kinome in the virulent Toxoplasma gondii RH strain. Front Microbiol 8:84

    PubMed  PubMed Central  Google Scholar 

  • Yang CS, Yuk JM, Lee YH, Jo EK (2015) Toxoplasma gondii GRA7-induced TRAF6 activation contributes to host protective immunity. Infect Immun 84(1):339–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Project support was provided by the National Key Research and Development Program of China (Grant No. 2017YFD0500403), the International Science and Technology Cooperation Project of Gansu Province (Grant No. 17JR7WA031), National Natural Science Foundation of China (Grant No. 31230073), and the Elite Program of Chinese Academy of Agricultural Sciences. We thank Novogene Corporation for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jun He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Additional file 1

Gene expression profiling based on Fragments per Kilobase per Million mapped reads (FPKM) values. (XLS 2300 kb)

Additional file 2

Gene expression analysis of RNA-seq data, showing DEGs between BHK-21 cells transfected with pCMV-GRA15I and control BHK-21 cells transfected with pCMV-mCherry. (XLS 13 kb)

Additional file 3

Gene expression analysis of RNA-seq data, showing DEGs between BHK-21 cells transfected with pCMV-GRA15II and control BHK-21 cells transfected with pCMV-mCherry. (XLS 374 kb)

Additional file 4

Gene expression analysis of RNA-seq data, showing DEGs between BHK-21 cells transfected with pCMV-GRA15I and BHK-21 cells transfected with pCMV-GRA15II. (XLS 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Gao, WW., Elsheikha, H.M. et al. Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15. Parasitol Res 117, 2785–2793 (2018). https://doi.org/10.1007/s00436-018-5966-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5966-8

Keywords

Navigation