Skip to main content

Advertisement

Log in

Innovative tools for the diagnosis of Echinococcus granulosus in definitive hosts

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The aim of this study was to develop and validate an innovative protocol for the diagnosis of Echinococcus granulosus and other Taeniidae in dogs. For this purpose, three experiments were performed, using faecal samples from naturally infected dogs. Firstly, the FLOTAC technique was calibrated with five flotation solutions: saturated sodium chloride (specific gravity, s.g. = 1.20), zinc sulphate (s.g. = 1.35), zinc chloride (s.g. = 1.45), Breza (s.g. = 1.30) and modified Breza (s.g. = 1.40). Then, FLOTAC was compared with four techniques of flotation in centrifuge using: zinc sulphate (s.g. = 1.20), Breza (s.g. = 1.30), modified Breza (s.g. = 1.40), and zinc chloride (s.g. = 1.45). Finally, four different protocols of DNA extraction were compared for Taeniidae identification: QIAamp Tissue Kit and QIAamp Stool from eggs; QIAamp Stool and Wizard Magnetic Purification System for Food from faeces. FLOTAC with zinc sulphate was the most efficient method to detect Taeniidae eggs, showing highest mean of eggs per gram (EPG) of faeces. The QIAamp Stool, using eggs concentrated by FLOTAC, was the best method for DNA extraction. The combination of these protocols provided the highest number of positive samples with PCR, i.e., 47/50 (94.0%). The three negative samples showed a low faecal egg count (2 EPG) below the detection limit (4 EPG) of the protocol. From sequencing of the 47 positive samples: 6 samples were identified as E. granulosus sensu stricto (s.s.), 28 as Taenia hydatigena and 6 as T. pisiformis. A co-infection between different genera of Taeniidae was found in 7 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi I, Branzburg A, Campos-Ponce M, Abdel Hafez SK, Raoul F, Craig PS, Hamburger J (2003) Copro-diagnosis of Echinococcus granulosus infection in dogs by amplification of a newly identified repeated DNA sequence. Am J Trop Med Hyg 69:324–330

    Article  PubMed  CAS  Google Scholar 

  • Acosta-Jamett G, Weitzel T, Boufana B, Adones C, Bahamonde A, Abarca K, Craig PS, Reiter-Owona I (2014) Prevalence and risk factors for echinococcal infection in a rural area of northern Chile: a household-based cross-sectional study. PLoS Negl Trop Dis 2014 8:e3090

    Article  Google Scholar 

  • Barnes TS, Deplazes P, Gottstein B, Jenkins DJ, Mathis A, Siles-Lucas M, Torgerson PR, Ziadinov I, Heath DD (2012) Challenges for diagnosis and control of cystic hydatid disease. Acta Trop 123:1–7

    Article  PubMed  CAS  Google Scholar 

  • Battelli G (2009) Echinococcosis: costs, losses and social consequences of a neglected zoonosis. Vet Res Commun 33:47–52

    Article  PubMed  Google Scholar 

  • Benito A, Carmena D, Joseph L, Martínez J, Guisantes JA (2006) Dog echinococcosis in northern Spain: comparison of coproantigen and serum antibody assays with coprological exam. Vet Parasitol 142:102–111

    Article  PubMed  Google Scholar 

  • Cardona GA, Carmena D (2013) A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol 192:10–32

    Article  PubMed  Google Scholar 

  • Carmena D, Cardona GA (2013) Canine echinococcosis: global epidemiology and genotypic diversity. Acta Trop 128:441–460

    Article  PubMed  Google Scholar 

  • Craig PS, Hegglin D, Lightowlers MW, Torgerson PR, Wang Q (2017) Echinococcosis. Control and Prevention Adv Parasitol 96:55–158

    Article  PubMed  CAS  Google Scholar 

  • Craig P, Mastin A, van Kesteren F, Boufana B (2015) Echinococcus granulosus: epidemiology and state-of-the-art of diagnostics in animals. Vet Parasitol 213:132–148

    Article  PubMed  Google Scholar 

  • Craig PS, McManus DP, Lightowlers MW, Chabalgoity JA, Garcia HH, Gavidia CM, Gilman RH, Gonzalez AE, Lorca M, Naquira C, Nieto A, Schantz PM (2007) Prevention and control of cystic echinococcosis. Lancet Infect Dis 7:385–394

    Article  PubMed  Google Scholar 

  • Cringoli G, Rinaldi L, Maurelli MP, Utzinger J (2010) FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat Protoc 5:503–515

    Article  PubMed  CAS  Google Scholar 

  • Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, Antolova D, Schurer JM, Lahmar S, Cringoli G, Magambo J, Thompson RC, Jenkins EJ (2017) Global distribution of alveolar and cystic echinococcosis. Adv Parasitol 95:315–493

    Article  PubMed  CAS  Google Scholar 

  • Dore F, Varcasia A, Pipia AP, Sanna G, Pinna Parpaglia ML, Corda A, Romig T, Scala A (2014) Ultrasound as a monitoring tool for cystic echinococcosis in sheep. Vet Parasitol 203:59–64

    Article  PubMed  CAS  Google Scholar 

  • Eckert J, Deplazes P, Craig PS, Gemmell MA, Gottstein B, Heath D, Jenkins DJ, Kamiya M, Lightowlers M (2001) Chapter 3: Echinococcosis in animals: clinical aspects, diagnosis and treatment. Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS (Ed), WHO/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern, WHO/OIE, Paris

  • Eckert J, Thompson RC (2017) Historical aspects of echinococcosis. Adv Parasitol 95:1–64

    Article  PubMed  CAS  Google Scholar 

  • ESCCAP (2017). Guideline 1: worm control in dogs and cats. Third Edition

  • Feng K, Guo Z, Duo H, Fu Y, Shen X, Tie C, E R, Xiao C, Luo Y, Qi G, Ni M, Ma Q, Yamazaki W, Yoshida A, Horii Y, Yagi K, Nonaka N (2017) Development of LAMP assays for the molecular detection of Taeniid infection in canine Tibetan rural area. J Vet Med Sci 79:1986–1993

    Article  PubMed  PubMed Central  Google Scholar 

  • Godber OF, Phythian CJ, Bosco A, Ianniello D, Coles G, Rinaldi L, Cringoli G (2015) A comparison of the FECPAK and mini-FLOTAC faecal egg counting techniques. Vet Parasitol 207:342–345

    Article  PubMed  Google Scholar 

  • Huang Y, Yang W, Qiu J, Chen X, Yang Y, Qiu D, Xiao N, Xiao Y, Heath D (2007) A modified coproantigen test used for surveillance of Echinococcus spp. in Tibetan dogs. Vet Parasitol 149:229–238

    Article  PubMed  Google Scholar 

  • Irie T, Ito T, Kouguchi H, Yamano K, Uraguchi K, Yagi K, Nonaka N (2017) Diagnosis of canine Echinococcus multilocularis infections by copro-DNA tests: comparison of DNA extraction techniques and evaluation of diagnostic deworming. Parasitol Res 116:2139–2144

    Article  PubMed  Google Scholar 

  • Kachani M, Heath D (2014) Dog population management for the control of human echinococcosis. Acta Trop 139:99–108

    Article  PubMed  Google Scholar 

  • Lahmar S, Lahmar S, Boufana B, Bradshaw H, Craig PS (2007) Screening for Echinococcus granulosus in dogs: comparison between arecoline purgation, coproELISA and coproPCR with necropsy in pre-patent infections. Vet Parasitol 144:287–292

    Article  PubMed  CAS  Google Scholar 

  • Mathis A, Deplazes P, Eckert J (1996) An improved test system for PCR-based specific detection of Echinococcus multilocularis eggs. J Helminthol 70:219–222

    Article  PubMed  CAS  Google Scholar 

  • McManus DP, Zhang W, Li J, Bartley PB (2003) Echinococcosis. Lancet 362:1295–1304

    Article  PubMed  Google Scholar 

  • Morel N, Lassabe G, Elola S, Bondad M, Herrera S, Marì C, Last JA, Jensen O, Gonzalez-Sapienza G (2013) A monoclonal antibody-based copro-ELISA kit for canine echinococcosis to support the PAHO effort for hydatid disease control in South America. Plos Neg Trop Dis 7:e1967

    Article  Google Scholar 

  • Moss JE, Chen X, Li T, Qiu J, Wang Q, Giraudoux P, Ito A, Torgerson PR, Craig PS (2013) Reinfection studies of canine echinococcosis and role of dogs in transmission of Echinococcus multilocularis in Tibetan communities, Sichuan. China Parasitology 2013 140:1685–1692

    CAS  Google Scholar 

  • Naidich A, McManus DP, Canova SG, Gutierrez AM, Zhang W, Guarnera EA, Rosenzvit MC (2006) Patent and pre-patent detection of Echinococcus granulosus genotypes in the definitive host. Mol Cell Probes 20:5–10

    Article  PubMed  CAS  Google Scholar 

  • Nonaka N, Nakamura S, Inoue T, Oku Y, Katakura K, Matsumoto J, Mathis A, Chembesofu M, Phiri IG (2011) Coprological survey of alimentary tract parasites in dogs from Zambia and evaluation of a coproantigen assay for canine echinococcosis. Ann Trop Med Parasitol 2011 105:521–530

    CAS  Google Scholar 

  • Öge H, Öge S, Gönenç B, Sarımehmetoğlu O, Özbakış G (2017) Coprodiagnosis of Echinococcus granulosus infection in dogs from Ankara, Turkey. Vet Parasitol 242:44–46

    Article  PubMed  Google Scholar 

  • Pratiush PR, D’Souza PE, Gowda AKJ (2008) Diagnosis of Echinococcus granulosus infection in dogs by a coproantigen sandwich ELISA. Veterinarski Arhiv 78:297–305

    Google Scholar 

  • Stefanić S, Shaikenov BS, Deplazes P, Dinkel A, Torgerson PR, Mathis A (2004) Polymerase chain reaction for detection of patent infections of Echinococcus granulosus (“sheep strain”) in naturally infected dogs. Parasitol Res 92:347–351

    Article  PubMed  Google Scholar 

  • Széll Z, Sréter-Lancz Z, Sréter T (2014) Evaluation of faecal flotation methods followed by species-specific PCR for detection of Echinococcus multilocularis in the definitive hosts. Acta Parasitol 59:331–336

    Article  PubMed  CAS  Google Scholar 

  • Thienpont D, Rochette F, Vanparijs OFS (1979) Diagnose von Helminthosen durch koproskopische Untersuchung. In: Janssen Research Foundation 1979, Beerse belgium, 361/54, vol 14, p 01

    Google Scholar 

  • Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou XN, Fèvre EM, Sripa B, Gargouri N, Fürst T, Budke CM, Carabin H, Kirk MD, Angulo FJ, Havelaar A, de Silva N (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 12:e1001920

    Article  PubMed  PubMed Central  Google Scholar 

  • Trachsel D, Deplazes P, Mathis A (2007) Identification of taeniid eggs in the faeces from carnivores based on multiplex PCR using targets in mitochondrial DNA. Parasitology 134:911–920

    Article  PubMed  CAS  Google Scholar 

  • Varcasia A, Canu S, Lightowlers MW, Scala A, Garippa G (2006) Molecular characterization of Echinococcus granulosus strains in Sardinia. Parasitol Res 98:273–277

    Article  PubMed  CAS  Google Scholar 

  • Varcasia A, Garippa G, Scala A (2004) The diagnosis of Echinococcus granulosus in dogs. Parassitologia 46:409–412

    PubMed  CAS  Google Scholar 

  • Varcasia A, Tamponi C, Tosciri G, Pipia AP, Dore F, Schuster RK, Kandil OM, Manunta ML, Scala A (2015) Is the red fox (Vulpes vulpes) a competent definitive host for Taenia multiceps? Parasit Vectors 8:1096

    Article  Google Scholar 

  • Varcasia A, Tanda B, Giobbe M, Solinas C, Pipia AP, Malgor R, Carmona C, Garippa G, Scala A (2011) Cystic echinococcosis in Sardinia: Farmers’ knowledge and dog infection in sheep farms. Vet Parasitol 181:335–340

    Article  PubMed  CAS  Google Scholar 

  • WHO (2011) Report of the WHO Informal Working Group on cystic and alveolar echinococcosis surveillance, prevention and control, with the participation of the Food and Agriculture Organization of the United Nations and the World Organisation for Animal Health. WHO Geneva

    Google Scholar 

  • WHO/OIE (2002) WHO/OIE Manual on Echinococcosis in Humans and Animals: a Public Health Problem of Global Concern Edited by Eckert J, Gemmell M A, Meslin F-X and Pawłowski Z S. World Organisation for Animal Health, Paris

  • Zhang W, Wang S, McManus DP (2014) Echinococcus granulosus genomics: a new dawn for improved diagnosis, treatment, and control of echinococcosis. Parasite 21:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuo X, Yu Y, Chen X, Zhang Z, Yang Y, Du A (2017) Development of a colloidal gold immunochromatographic strip based on HSP70 for the rapid detection of Echinococcus granulosus in sheep. Vet Parasitol 240:34–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Regional Project ‘Control and reduction of echinococcosis/hydatidosis in animals and humans- EchinoCamp Phase 2’ is sincerely thanked. The authors also acknowledge Morgoglione M.E. and Santaniello M., for their technical support for laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paola Maurelli.

Ethics declarations

Conflict of interest

The FLOTAC apparatus has been developed and is patented by G. Cringoli, University of Naples ‘Federico II’. It is provided free of charge to public research centres, including universities. The fact that one of the authors is the current patent holder of the FLOTAC apparatus played no role in the preparation and submission of the manuscript.

On behalf of all other authors, the corresponding author states that there is no conflict of interest.

Ethical approval and informed consent to participate

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. We have obtained informed consent from the owners of animals to collect the faecal samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurelli, M.P., Bosco, A., Pepe, P. et al. Innovative tools for the diagnosis of Echinococcus granulosus in definitive hosts. Parasitol Res 117, 2607–2612 (2018). https://doi.org/10.1007/s00436-018-5952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5952-1

Keywords

Navigation