Skip to main content
Log in

Suitable in vitro culture of Eimeria bovis meront II stages in bovine colonic epithelial cells and parasite-induced upregulation of CXCL10 and GM-CSF gene transcription

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

We here established a suitable in vitro cell culture system based on bovine colonic epithelial cells (BCEC) for the development of Eimeria bovis merozoites I and the characterization of early parasite-induced innate epithelial host cell reactions as gene transcription of proinflammatory molecules. Both primary and permanent BCEC (BCECprim and BCECperm) were suitable for E. bovis merozoite I invasion and subsequent development of meronts II leading to the release of viable merozoites II. E. bovis merozoite II failed to develop any further neither into gamont nor oocyst stages in BCEC in vitro. E. bovis merozoite I induced innate epithelial host cell reactions at the level of CXC/CCL chemokines (CXCL1, CXCL8, CXCL10, CCL2), IL-6, and GM-CSF gene transcription. Overall, both BCEC types were activated by merozoite I infections since they showed significantly enhanced gene transcript levels of the immunomodulatory molecules CXCL10 and GM-CSF. However, gene transcription profiles of BCECprim and BCECperm revealed different reaction patterns in response to merozoite I infection with regard to quality and kinetics of chemokine/cytokine gene transcription. Although both BCEC types equally showed most prominent responses for CXCL10 and GM-CSF, the induction of CXCL1, CXCL8, CCL2, and IL-6 gene transcripts varied qualitatively and quantitatively. Our results demonstrate that BCEC seem capable to respond to E. bovis merozoite I infection by the upregulation of CXCL10 and GM-CSF gene transcription and therefore probably contribute to host innate effector mechanisms against E. bovis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amin DN, Ngoyi DM, Nhkwachi GM, Palomba M, Rottenberg M, Buscher P et al (2010) Identification of stage biomarkers for human African trypanosomiasis. Am J Trop Med Hyg 83:983–990

    Article  Google Scholar 

  • Astarci E, Sade A, Cimen I, Savas B, Banerjee S (2012) The NF-kB target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells. FEBS J 279(16):2966–2986

    Article  CAS  PubMed  Google Scholar 

  • Badawy AII, Lutz K, Taubert A, Zahner H, Hermosilla C (2010) Eimeria bovis meront I-carrying host cells express parasite-specific antigens on their surface. Vet Res Commun 34:103–117

    Article  PubMed  Google Scholar 

  • Behrendt JH, Clauss W, Zahner H, Hermosilla C (2004) Alternative mechanism of Eimeria bovis sporozoites to invade cells in vitro by breaching the plasma membrane. J Parasitol 90(5):1163–1165

    Article  CAS  PubMed  Google Scholar 

  • Behrendt JH, Taubert A, Zahner H, Hermosilla C (2008) Studies on synchronous egress of coccidian parasites (Neospora caninum, Toxoplasma gondii, Eimeria bovis) from bovine endothelial cells mediated by calcium ionophore A23187. Vet Res Commun 32:325–332

    Article  PubMed  Google Scholar 

  • Bridger PS, Mohr M, Stamm I, Fröhlich J, Föllmann W, Birkner S, Metcalfe H, Werling D, Baljer G, Menge C (2010) Primary bovine colonic cells: a model to study strain-specific responses to Escherichia coli. Vet Immunol Immunopathol 137(1–2):54–63

    Article  CAS  PubMed  Google Scholar 

  • Campanella GSV, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA, Colvin RA, Luster AD (2008) Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. PNAS 105:4814–4819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Channon JY, Miselis KA, Minns LA, Dutta C, Kasper LH (2002) Toxoplasma gondii induces granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by human fibroblasts: implications for neutrophil apoptosis. Infect Immun 70:6048–6057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

  • Daugschies A, Bürger HJ, Akimura M (1998) Apparent digestibility of nutrients and nitrogen balance during experimental infection of calves with Eimeria bovis. Vet Parasitol 77:93–102

    Article  CAS  PubMed  Google Scholar 

  • Daugschies A, Najdrowski M (2005) Eimeriosis in cattle: current understanding. J Vet Med B Inf Dis Vet Pub Health 52:417–427

    Article  CAS  Google Scholar 

  • Delemarre FG, Stevenhagen A, Van Furth R (1995) Granulocyte-macrophage colony-stimulating factor (GM-CSF) reduces toxoplasmastatic activity of human monocytes via induction of prostaglandin E2 (PFE2). Clin Exp Immunol 102:425–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng M, Rutherford MS, Abrahamsen MS (2004) Host intestinal epithelial response to Cryptosporidium parvum. Adv Drug Deliv Rev 56(6):869–884

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Nie W, Bonilla R, Widmer G, Sheoran A, Tzipori S (2006) Quantitative tracking of Cryptosporidium infection in cell culture with CFSE. J Parasitol 92(6):1350–1354

    Article  PubMed  Google Scholar 

  • Fiege N, Klatte D, Kollmann D, Zahner H, Bürger HJ (1992) Eimeria bovis in cattle: colostral transfer of antibodies and immune response to experimental infections. Parasitol Res 78:32–38

    Article  CAS  PubMed  Google Scholar 

  • Fischer HG, Nitzgen B, Reichmann G, Hadding U (1997) Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells. Eur J Immunol 27:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald PR (1980) The economic impact of coccidiosis in domestic animals. Adv Vet Sci Comp Med 24:121–143

    CAS  PubMed  Google Scholar 

  • Föllmann W, Weber S, Birkner S (2000) Primary cell culture of bovine colon epithelium: isolation and cell culture of colonocytes. Toxicol In Vitro 14(5):435–445

    Article  PubMed  Google Scholar 

  • Hamid PH, Hirzmann J, Hermosilla C, Taubert A (2014) Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development. Parasitol Res 113:4165–4176. doi:10.1007/s00436-014-4092

    Article  PubMed  Google Scholar 

  • Hammond DM, Andersen FL, Miner ML (1963) The occurrence of a second generation in the life cycle of Eimeria bovis in calves. J Parasitol 49:428–434

    Article  CAS  PubMed  Google Scholar 

  • Hammond DM, Davis LR, Bowmann L (1964) Experimental infections with Eimeria bovis in calves. Am J Vet Res 5:303–311

    Google Scholar 

  • Hammond DM, Fayer R (1967) In vitro cultivation of Eimeria bovis. J Protozool 14(Suppl):23

    Google Scholar 

  • Hammond DM, Fayer R (1968) Cultivation of Eimeria bovis in three established cell lines and in bovine tracheal cell line cultures. J Parasitol 54:559–568

    Article  Google Scholar 

  • Hermosilla C, Barbisch B, Heise A, Kowalik S, Zahner H (2002) Development of Eimeria bovis in vitro: suitability of several bovine, human and porcine endothelial cell lines, bovine fetal gastrointestinal, Madin-Darby bovine kidney (MDBK) and African green monkey kidney (VERO) cells. Parasitol Res 88:301–307

    Article  CAS  PubMed  Google Scholar 

  • Hermosilla C, Zahner H, Taubert A (2006) Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells. Int J Parasitol 36:423–431

    Article  CAS  PubMed  Google Scholar 

  • Hermosilla C, Stamm I, Taubert A, Lutz K, Zahner H, Menge C (2008) Fluorescent Eimeria bovis sporozoites and meront stages in vitro: a helpful tool to study parasite-host cell interactions. Parasitol Res 102:777–786

    Article  PubMed  Google Scholar 

  • Hermosilla C, Ruiz A, Taubert A (2012) Eimeria bovis: an update on parasite-host cell interactions. Int J Med Microbiol 302:210–215

    Article  PubMed  Google Scholar 

  • Hermosilla C, Muñoz Caro T, Silva LMR, Ruiz A, Taubert A (2014) The intriguing host innate response: novel anti-parasitic defence by neutrophil extracellular traps. Parasitology 141:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Hofmann J, Raether W (1990) Improved techniques for the in vitro cultivation of Eimeria tenella in primary chick kidney cells. Parasitol Res 76:479–486

    Article  CAS  PubMed  Google Scholar 

  • Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Ban H, Bamba S, Sonoda H, Shimizu T, Fujiyama Y, Andoh A (2013) Epithelial expression of interleukin-37b in inflammatory bowel disease. Clin Exp Immunol 172:410–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S et al (2008) IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 7:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Ju CH, Chockalingam A, Leifer CA (2009) Early response of mucosal epithelial cells during Toxoplasma gondii infection. J Immunol 183(11):7420–7427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan IA, MacLean JA, Lee FS, Casciotti L, DeHaan E, Schwartzman JD, Luster AD (2000) CXCL10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12:483–494

    Article  CAS  PubMed  Google Scholar 

  • Lacroix-Lamendé S, Mancassola R, Naciri M, Laurent F (2002) Role of gamma interferon in chemokine expression in the ileum of mice and murine intestinal epithelial cell line after Cryptosporidium parvum infection. Infect Immun 70(4):2090–2099

    Article  Google Scholar 

  • Lane JA, O’Callaghan J, Carrington SD, Hickey RM (2013) Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br J Nutr 28:1–11

    Google Scholar 

  • Lang M, Kann M, Zahner H, Taubert A, Hermosilla C (2009) Inhibition of host cell apoptosis by Eimeria bovis sporozoites. Vet Parasitol 160(1–2):25–33

    Article  CAS  PubMed  Google Scholar 

  • Laurent F, Eckmann L, Savidge TC, Morgan G, Theodos C, Naciri M, Kagnoff MF (1997) Cryptosporidium parvum infection of human intestinal epithelial cells induces the polarized secretion of C-X-C chemokines. Infect Immun 65(12):5067–5073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leutenegger CM, Alluwaimi AM, Smith WL, Perani L, Cullor JS (2000) Quantification of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan polymerase chain reaction. Vet Immunol Immunopathol 77:275–287

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK (2011) CXCL10/IP10 in infectious diseases pathogenesis and potential therapeutic implications. Cyto Growth Factor Rev 22:121–130

    CAS  Google Scholar 

  • Lo BK, Yu M, Zloty D, Cowan B, Shapiro J, McElwee (2010) CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinoma. Am J Pathol 176(5):2435–2446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Locati M, Otero K, Schioppa T, Signorelli P, Perrier P, Baviera S, Sozzani S, Mantovani A (2002) The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy 57:972–982

    Article  CAS  PubMed  Google Scholar 

  • Lutz K, Schmitt S, Linder M, Hermosilla C, Zahner H, Taubert A (2011) Eimeria bovis-induced modulation of the host cell proteome at the meront I stage. Mol Biochem Parasitol 175(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • McDonald V, Korbel DS, Barakat FM, Choudhry N, Petry F (2013) Innate immune response against Cryptosporidium parvum. Parasite Immunol 35:55–64

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Caro T, Mena Huertas SJ, Conejeros I, Alarcon P, Hidalgo MA, Burgos RA, Hermosilla C, Taubert A (2015) Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK1/2-, p38 MAP kinase- and SOCE-dependent. Vet Res 46:23. doi:10.1186/s13567-015-0155-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Muñoz-Caro T, Hermosilla C, Silva LMR, Cortes H, Taubert A (2014a) Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnioti. PLoS ONE 9(3):e91415

    Article  PubMed Central  PubMed  Google Scholar 

  • Muñoz-Caro T, Silva LMR, Ritter C, Taubert A, Hermosilla C (2014b) Besnoitia besnoiti tachyzoites induce monocyte extracellular trap formation. Parasitol Res 113:4189–4197. doi:10.1007/s00436-014-4094-3

    Article  PubMed  Google Scholar 

  • Nagineni CN, Detrick B, Hooks JJ (2000) Toxoplasma gondii infection induces gene expression and secretion of interleukin 1 (IL-1), IL-6, granulocyte-macrophage colony-stimulating factor, and intercellular adhesion molecule 1 by human retinal pigment epithelial cells. Infect Immun 68:407–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norose K, Kikumura A, Luster AD, Hunter CA, Harris TH (2011) CXCL10 is required to maintain T cell populations and control parasite replication during chronic ocular toxoplasmosis. Invest Ophthalmol Vis Sci 52(1):389–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pauly T, Elbers K, König M, Lengsfeld T, Saalmüller A, Thiel HJ (1995) Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J Gen Virol 76(Pt 12):3039–3049

    Article  CAS  PubMed  Google Scholar 

  • Reduker DW, Speer CA (1986) Antigens of in-vitro produced first generation merozoites of Eimeria bovis (Apicomplexa). J Parasitol 72:782–785

    Article  CAS  PubMed  Google Scholar 

  • Reduker DW, Speer CA (1987) Effects of sporozoite inoculum size on in vitro production of merozoites of Eimeria bovis (Apicomplexa). J Parasitol 73:427–430

    Article  CAS  PubMed  Google Scholar 

  • Rose ME, Hesketh P, Wakelin D (1992a) Immune control of murine coccidiosis: CD4+ and CD8+ T lymphocytes contribute differentially in resistance to primary and secondary infections. Parasitology 105(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Rose ME, Millard BJ, Hesketh P (1992b) Intestinal changes associated with expression of immunity to challenge with Eimeria vermiformis. Infect Immun 60:5283–5290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz A, Behrendt JH, Zahner H, Hermosilla C, Pérez D, Matos L, Muñoz MC, Molina JM, Taubert A (2010) Development of Eimeria ninakohlyakimovae in vitro in primary and permanent cell lines. Vet Parasitol 173:2–10

    Article  PubMed  Google Scholar 

  • Silva LMR, Muñoz Caro T, Gerstberger R, Vila-Voçosa MJM, Cortes HCE, Hermosilla C, Taubert A (2014) The apicomplexan parasite Eimeria arloingi induces caprine neutrophil extracellular traps. Parasitol Res 113:2797–2807. doi:10.1007/s00436-014-3939-0

    Article  PubMed  Google Scholar 

  • Silva LMR, Vila-Viçosa MJM, Cortes HCE, Taubert A, Hermosilla C (2015) Suitable in vitro Eimeria arloingi macromeront formation in host endothelial cells and modulation of adhesion molecule, cytokine and chemokine gene transcription. Parasitol Res 114:113–124. doi:10.1007/s00436-014-4166-4

    Article  PubMed  Google Scholar 

  • Speer CA, Reduker DW, Burgess DE, Whitmire WM, Splitter GA (1985) Lymphokine-induced inhibition of growth of Eimeria bovis and Eimeria papillata (Apicomplexa) cultured in bovine monocytes. Infect Immun 50:566–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi M, Huther S, Burkhardt E, Zahner H (2001a) Lymphocyte subpopulations in the caecum mucosa of rats after infections with Eimeria separata: early responses in naïve and immune animals to primary and challenge infections. Int J Parasitol 31:49–55

    Article  CAS  PubMed  Google Scholar 

  • Shi MQ, Hirzmann J, Dafa’alla TH, Zahner H (2001b) In vivo expression profiles of cytokine and iNOS mRNA in rats infected with Eimeria separata. Vet Parasitol 97:131–140

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Hayday AC (2000) Genetic dissection of primary and secondary responses to a widespread natural pathogen of the gut Eimeria vermiformis. Infect Immun 68:6273–6280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stamm I, Mohr M, Bridger PS, Schröpfer E, König M, Stoffregen WC, Dean-Nystrom EA, Baljer G, Menge C (2008) Epithelial and mesenchymal cells in the bovine colonic mucosa differ in their responsiveness to Escherichia coli Shiga toxin 1. Infect Immun 76(11):5381–5391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sühwold A, Hermosilla C, Seeger T, Zahner H, Taubert A (2010) T cell reactions of Eimeria bovis primary- and challenge-infected calves. Parasitol Res 106:595–605

  • Sumners LH, Miska KB, Jenkins MC, Fetterer RH, Cox CM, Kim S, Dalloul RA (2011) Expression of Toll-like receptors and antimicrobial peptides during Eimeria praecox infection in chickens. Exp Parasitol 127(3):714–718

  • Taubert A, Zahner H, Hermosilla C (2006a) Dynamics of transcription of immunomodulatory genes in endothelial cells infected with different coccidian parasites. Vet Parasitol 142:214–222

    Article  CAS  PubMed  Google Scholar 

  • Taubert A, Krüll M, Zahner H, Hermosilla C (2006b) Toxoplasma gondii and Neospora caninum infections of bovine endothelial cells induce endothelial adhesion molecule gene transcription and subsequent PMN adhesion. Vet Immunol Immunopathol 112:272–283

    Article  CAS  PubMed  Google Scholar 

  • Taubert A, Hermosilla C, Sühwold A, Zahner H (2008) Antigen-induced cytokine production in lymphocytes of Eimeria bovis primary and challenge infected calves. Vet Immunol Immunopathol 126:309–320

    Article  CAS  PubMed  Google Scholar 

  • Taubert A, Wimmers K, Ponsuksili S, Jimenez CA, Zahner H, Hermosilla C (2010) Microarray-based transcriptional profiling of Eimeria bovis-infected bovine endothelial host cells. Vet Res 41(5):70

    Article  PubMed Central  PubMed  Google Scholar 

  • Tschopp J, Martinon F, Burns K (2003) Nalps: a novel protein family involved in inflammation. Nat Rev 4:95–104

    Article  CAS  Google Scholar 

  • Vasquez RE, Xin I, Soong I (2008) Effects of CXCL10 on dendritic cell and CD4+ T-cell functions during Leishmania amazonensis infection. Infect Immunol 76:161–169

    Article  CAS  Google Scholar 

  • Wang HC, Dann SM, Okhuysen PC, Lewis DE, Chappell CL, Adler DG, White CA Jr (2007) High levels of CXCL10 are produced by intestinal epithelial cells in AIDS patients with active cryptosporidiosis but not after reconstitution of immunity. Infect Immunol 75:481–487

    Article  CAS  Google Scholar 

  • Zhang L, Liu R, Ma L, Wang Y, Pan B, Cai J, Wang M (2012) Eimeria tenella: expression profiling of toll-like receptors and associated cytokines in the cecum of infected day-old and three-week old SPF chickens. Exp Parasitol 130(4):442–448

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7(12):243

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to Brigitte Hofmann for her excellent technical assistance in cell culture. This work was supported and financed by the German Research Foundation (DFG, HE 3663/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hermosilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermosilla, C., Stamm, I., Menge, C. et al. Suitable in vitro culture of Eimeria bovis meront II stages in bovine colonic epithelial cells and parasite-induced upregulation of CXCL10 and GM-CSF gene transcription. Parasitol Res 114, 3125–3136 (2015). https://doi.org/10.1007/s00436-015-4531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4531-y

Keywords

Navigation