Skip to main content

Advertisement

Log in

Ferroptosis-related genes prognostic signature for pancreatic cancer and immune infiltration: potential biomarkers for predicting overall survival

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic adenocarcinoma (PAAD) constitutes a lethal malignancy, notorious for its elevated mortality rates due to the difficulties in early diagnosis and rapid metastasis. The emerging paradigm of ferroptosis—an iron-catalyzed, regulated cell death distinguished by the accrual of lipid peroxides—has recently garnered scholarly focus. However, the expression landscape of ferroptosis-related genes (FRGs) in PAAD and their prognostic implications remain enigmatic.

Methods

We undertook a rigorous quantification of FRGs in PAAD samples, sourcing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. These repositories also provided extensive metadata, encompassing mesenchymal stemness index (mRNAsi), genomic mutations, copy number variations (CNV), tumor mutational burden (TMB), and other clinical attributes. A predictive model was constructed utilizing Lasso regression analysis, and a co-expression study was executed to elucidate the complex interconnections between FRGs and other gene sets.

Results

Intriguingly, FRGs were substantially upregulated in the high-risk cohort, even in the absence of clinically manifest symptoms, emphasizing their utility as prognostic biomarkers. Gene set enrichment analysis (GSEA) revealed significant enrichment of immune and tumor-related pathways in this high-risk demographic. Striking heterogeneities in immune function and N6-methyladenosine (m6A) RNA modification were observed between the low- and high-risk groups. Our analysis further implicated a cohort of genes—including LINC01559, C11orf86, SERPINB5, DSG3, MSLN, EREG, FAM83A, CXCL5, LY6D, and PSCA—as cardinal mediators in PAAD pathogenesis. A convergence of our predictive model with an analysis of CNVs, single nucleotide polymorphisms (SNPs), and drug sensitivities, revealed an intricate relationship with the FRGs.

Conclusions

Our findings accentuate the salient role of FRGs as critical modulators in the pathogenesis and progression of PAAD. Importantly, our composite prognostic framework offers invaluable insights into PAAD clinical trajectory. Moreover, the complex crosstalk between FRGs and immune cell landscapes in the tumor microenvironment (TME) may elucidate prospective therapeutic strategies. The clinical translational utility of these insights, however, requires further in-depth empirical exploration. Accordingly, the FRG signature introduces a compelling new avenue for risk stratification and targeted therapeutic interventions in this devastating malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data can be obtained from the open-source website we provide, and the conclusion can be drawn through the analysis of the relevant software.

Abbreviations

PAAD:

Pancreatic adenocarcinoma

GO:

Gene Ontology

AUC:

Areas under the curve

MF:

Molecular functions

ICIs:

Immune checkpoint inhibitors

ROC:

Receiver-operating characteristics

GSEA:

Gene set enrichment analyses

KEGG:

Kyoto Encyclopedia of Genes and Genomes

TCGA:

The Cancer Genome Atlas

FRGs:

Ferroptosis-related genes

BP:

Biological processes

CC:

Cellular components

OS:

Overall survival

GEO:

Gene Expression Omnibus

DEGs:

Differentially expressed genes

ICRGs:

Immune checkpoint-related gene

References

  • Chen C, Xu ZQ, Zong YP, Ou BC, Shen XH, Feng H, Zheng MH, Zhao JK, Lu AG (2019) CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-kappaB pathway in colorectal cancer. Cell Death Dis 10(3):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D (2021a) Ferroptosis in infection, inflammation, and immunity. J Exp Med 218(6)

  • Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021b) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li X, Ge C, Min J, Wang F (2022) The multifaceted role of ferroptosis in liver disease. Cell Death Differ 29(3):467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O, Gu W (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21(5):579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol 1084:193–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedmann AJ, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  Google Scholar 

  • Giese MA, Hind LE, Huttenlocher A (2019) Neutrophil plasticity in the tumor microenvironment. Blood 133(20):2159–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Qu Z, Li D, Bai F, Xing J, Ding Q, Zhou J, Yao L, Xu Q (2021) Identification of a prognostic ferroptosis-related lncRNA signature in the tumor microenvironment of lung adenocarcinoma. Cell Death Discov 7(1):190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckl SM, Mau F, Senftleben A, Daunke T, Beckinger S, Abdullazade S, Schreiber S, Rocken C, Sebens S, Schafer H (2021) Programmed death-ligand 1 (PD-L1) expression is induced by insulin in pancreatic ductal adenocarcinoma cells pointing to its role in immune checkpoint control. Med Sci (basel) 9(3):848

    Google Scholar 

  • Hsu SK, Li CY, Lin IL, Syue WJ, Chen YF, Cheng KC, Teng YN, Lin YH, Yen CH, Chiu CC (2021) Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 11(18):8813–8835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S, Scott JP, Cai KQ, Campbell MR, Porter DK et al (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30(8):918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Sohal D (2023) Pancreatic adenocarcinoma management. JCO Oncol Pract 19(1):19–32

    Article  PubMed  Google Scholar 

  • Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, Fu S, Sehgal M, Garcia-Gerique L, Kossenkov A et al (2022) Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612(7939):338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CJ, Hansen M, Troemel E (2018) Autophagy and innate immunity: Insights from invertebrate model organisms. Autophagy 14(2):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert A, Schwarz L, Ducreux M, Conroy T (2021) Neoadjuvant treatment strategies in resectable pancreatic cancer. Cancers (basel) 13(18):4724

    Article  CAS  PubMed  Google Scholar 

  • Lei G, Zhang Y, Hong T, Zhang X, Liu X, Mao C, Yan Y, Koppula P, Cheng W, Sood AK et al (2021) Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene 40(20):3533–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. NAT REV CANCER 22(7):381–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. CELL DEATH DIS 11(2):88

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu Z, Zhang Y (2021) Expression and prognostic impact of FZDs in pancreatic adenocarcinoma. BMC Gastroenterol 21(1):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Feng J, Chen X, Wang D, Wong M, Zhang G, Na J, Zhang T, Chen Z, Chen YT et al (2021) High levels of truncated RHAMM cooperate with dysfunctional p53 to accelerate the progression of pancreatic cancer. Cancer Lett 514:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddipati R, Norgard RJ, Baslan T, Rathi KS, Zhang A, Saeid A, Higashihara T, Wu F, Kumar A, Annamalai V et al (2022) MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer Discov 12(2):542–561

    Article  CAS  PubMed  Google Scholar 

  • Maung TZ, Ergin HE, Javed M, Inga EE, Khan S (2020) Immune checkpoint inhibitors in lung cancer: role of biomarkers and combination therapies. Cureus 12(5):e8095

    PubMed  PubMed Central  Google Scholar 

  • Meng M, Huang M, Liu C, Wang J, Ren W, Cui S, Gu J, Xie J, Ma B, Yang G, He S (2021) Local anesthetic levobupivacaine induces ferroptosis and inhibits progression by up-regulating p53 in non-small cell lung cancer. Aging (Albany NY) 13. https://doi.org/10.18632/aging.203138

  • Meurette O, Mehlen P (2018) Notch Signaling in the Tumor Microenvironment. Cancer Cell 34(4):536–548

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa H, Matsumoto M, Shindo T, Saigusa D, Kato H, Suzuki K, Sato M, Ishii Y, Shimokawa H, Igarashi K (2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 295(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A 113(44):E6806–E6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi B, Liu H, Dong Y, Shi X, Zhou Q, Zeng F, Bao N, Li Q, Yuan Y, Yao L et al (2020) The nine ADAMs family members serve as potential biomarkers for immune infiltration in pancreatic adenocarcinoma. PeerJ 8:e9736

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sholl LM (2022) Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod Pathol 35(Suppl 1):66–74

    Article  CAS  PubMed  Google Scholar 

  • Stockwell BR, Friedmann AJ, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR, Jiang X, Gu W (2020) Emerging Mechanisms and Disease Relevance of Ferroptosis. TRENDS CELL BIOL 30(6):478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X et al (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Li C, Zhang YJ, Wu ZH (2021) Ferroptosis-related long non-coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma. INT J BIOL SCI 17(3):702–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vareedayah AA, Alkaade S, Taylor JR (2018) Pancreatic Adenocarcinoma. Mo Med 115(3):230–235

    PubMed  PubMed Central  Google Scholar 

  • Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Hu Q, Li W, Li M, Dong S, Peng Y, Yin J, Lu Y, Liu L, Zhao Q (2022) The role of ferroptosis signature in overall survival and chemotherapy of pancreatic adenocarcinoma. DNA CELL BIOL 41(2):116–127

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN, Jiang X (2019) Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572(7769):402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Lv J, Zhao R, Wu Z, Zheng D, Shi J, Lin S, Wang S, Wu Q, Long Y et al (2020) PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomark Res 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Huang X, Cai M, Huang P, Guan Z (2022) Novel necroptosis-related gene signature for predicting the prognosis of pancreatic adenocarcinoma. Aging (albany NY) 14(2):869–891

    Article  CAS  PubMed  Google Scholar 

  • Xu LP, Qiu HB, Yuan SQ, Chen YM, Zhou ZW, Chen YB (2020) Downregulation of PSCA promotes gastric cancer proliferation and is related to poor prognosis. J Cancer 11(9):2708–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Zhang Z, Zhao Y, Zhou Y, Pei H, Bai L (2021) Bioinformatic mining and validation of the effects of ferroptosis regulators on the prognosis and progression of pancreatic adenocarcinoma. Gene 795:145804

    Article  CAS  PubMed  Google Scholar 

  • Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26(3):165–176

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Zhu J, Wu J, Thompson CB, Jiang X (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA 117(49):31189–31197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Ou B, Han D, Wang P, Zong Y, Zhu C, Liu D, Zheng M, Sun J, Feng H et al (2017) Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3beta/beta-catenin pathways. Mol Cancer 16(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou N, Bao J (2020) FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford) 2020:baaa021. https://doi.org/10.1093/database/baaa021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the reviewers and editors for their sincere comments.

Funding

2022 Central Subsidy Funding Project for the Inheritance and Development of Chinese Medicine, Major Disease Key Specialist Construction—Department of Geriatrics (YWC2022ZYYSY001); Lu's Internal Medicine School Inheritance Studio Construction Project (lp2022-01).

Author information

Authors and Affiliations

Authors

Contributions

LW and ZW drafted and revised the manuscript. LW and ZW were in charge of data collection. HY and CX conceived and designed this article, in charge of syntax modification and revision of the manuscript. All the authors have read and agreed to the final version manuscript.

Corresponding authors

Correspondence to Chen Xu or Hang Ye.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethics approval and consent to participation

This manuscript is not a clinical trial, hence the ethics approval and consent to participation are not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1649 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, Z., Xu, C. et al. Ferroptosis-related genes prognostic signature for pancreatic cancer and immune infiltration: potential biomarkers for predicting overall survival. J Cancer Res Clin Oncol 149, 18119–18134 (2023). https://doi.org/10.1007/s00432-023-05478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05478-4

Keywords

Navigation