Skip to main content

Advertisement

Log in

Plasma autoantibodies IgG and IgM to PD1/PDL1 as potential biomarkers and risk factors of lung cancer

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Antibodies targeting programmed cell death-1 (PD1) and its ligand (PDL1) have transformed current cancer therapy while little is known about the expression of anti-PD1/PDL1 autoantibodies between lung cancer (LC) patients and normal controls (NC). The expression level of anti-PD1/PDL1 IgG and IgM was detected in plasma of 325 LC and 324 NC by indirect enzyme-linked immune sorbent assay (ELISA). Western blot and indirect immunofluorescence (IIF) were used to verify the ELISA results. The association analysis was used to evaluate the odds ratio (OR) of LC. The expression of anti-PD1/PDL1 IgG in LC samples was significantly higher than NC (P < 0.001 and P < 0.05, respectively). The positive rate of anti-PD1/PDL1 IgG in LC was significantly higher than NC and significant difference was also shown in LC samples of different clinical characteristics, such as clinical stage, nodules diameter, lymph node metastasis and distant metastasis (P < 0.001). Moreover, PD1/PDL1 expression in tissues showed no significant relation with that in plasma (P > 0.05). Anti-PD1/PDL1 IgG were the risk factors related to LC (OR (95% CI): 22.433 (5.426–92.745) and 5.051 (1.316–19.386)), while anti-PD1/PDL1 IgM were the risk factors for LC with ≤ 60 years (OR (95% CI): 6.122 (1.365–27.455) and 7.664 (1.715–34.251)) and anti-PD1 IgM was also the risk factor for male LC cases(OR (95% CI): 6.948 (1.076–44.868)). Plasma anti-PD1/PDL1 IgG and IgM might serve as potential biomarkers and risk predictors for LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LC:

Lung cancer

NSCLC:

Non-small cell lung cancer

ICIs:

Immune checkpoint inhibitors

PD1:

Programmed cell death-1

PDL1:

Programmed cell death-ligand 1

FDA:

Food and Drug Administration

AAbs:

Autoantibodies

irAEs:

Immune-related adverse events

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

AIH:

Type 1 autoimmune hepatitis

RA:

Rheumatoid arthritis

SLE:

Systemic lupus erythematosus

NC:

Normal controls

ELISA:

Enzyme-linked immunosorbent assay

BSA:

Bovine serum albumin

HRP:

Horseradish peroxidase

TMB:

Tetramethyl benzidine

H2O2 :

Hydrogen peroxide

OD:

Optical density

CV:

Coefficient of variation

IIF:

Indirect immunofluorescence

CI:

Confidence internal

AUC:

Area under curve

YI:

Youden’s index

ROC:

Receiver operating characteristics

ADC:

Lung adenocarcinoma

SCC:

Lung squamous cell carcinoma

LM:

Lymph node metastasis

DM:

Distant metastasis

OR:

Odds ratio

References

  • Anichini A, Perotti VE, Sgambelluri F, Mortarini R (2020) Immune escape mechanisms in non small cell lung cancer. Cancers (basel). 12:3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-Iñiguez CE, Fox SW, De Leon LE et al (2019) Cumulative nonsmoking risk factors increase the probability of developing lung cancer. J Thorac Cardiovasc Surg 158:1248-1254.e1241

    Article  PubMed  Google Scholar 

  • Dai L, Li J, Tsay JJ et al (2017) Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology 6:e1310359

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong H, Strome SE, Matteson EL et al (2003) Costimulating aberrant T cell responses by B7–H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doroshow DB, Sanmamed MF, Hastings K et al (2019) Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res 25:4592–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara R, Imbimbo M, Malouf R et al (2020) Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer. Cochrane Database Syst Rev 12:Cd013257

    PubMed  Google Scholar 

  • Forde PM, Chaft JE, Smith KN et al (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med 378:1976–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092

    Article  CAS  PubMed  Google Scholar 

  • Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028

    Article  PubMed  Google Scholar 

  • Grant MJ, Herbst RS, Goldberg SB (2021) Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol 18:625–644

    Article  PubMed  Google Scholar 

  • Harel M, Ortenberg R, Varanasi SK et al (2019) Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 179:236-250.e218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki R, Nagoya A, Kanou T et al (2021) Risk factors for non-cancer death after surgery in patients with stage I non-small-cell lung cancer. Eur J Cardiothorac Surg 59:633–640

    Article  PubMed  Google Scholar 

  • Lee HH, Wang YN, Xia W et al (2019) Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36:168-178.e164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HT, Lee SH, Heo YS (2019) Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules 24:1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li CQ, Guo SJ et al (2020) Longitudinal serum autoantibody repertoire profiling identifies surgery-associated biomarkers in lung adenocarcinoma. EBioMedicine 53:102674

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Miyake Y, Matsushita H et al (2014) Anti-programmed cell death-1 antibody as a new serological marker for type 1 autoimmune hepatitis. J Gastroenterol Hepatol 29:110–115

    Article  CAS  PubMed  Google Scholar 

  • Proto C, Ferrara R, Signorelli D et al (2019) Choosing wisely first line immunotherapy in non-small cell lung cancer (NSCLC): what to add and what to leave out. Cancer Treat Rev 75:39–51

    Article  CAS  PubMed  Google Scholar 

  • Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833

    Article  CAS  PubMed  Google Scholar 

  • Rizvi NA, Mazières J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon AK, Hollander GA, McMichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282:20143085

    PubMed  PubMed Central  Google Scholar 

  • Stapelfeld C, Dammann C, Maser E (2020) Sex-specificity in lung cancer risk. Int J Cancer 146:2376–2382

    Article  CAS  PubMed  Google Scholar 

  • Sundling C, Lau AWY, Bourne K et al (2021) Positive selection of IgG(+) over IgM(+) B cells in the germinal center reaction. Immunity 54:988-1001.e1005

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Wang D, Yang J et al (2020) Autoantibody profiling identifies predictive biomarkers of response to anti-PD1 therapy in cancer patients. Theranostics 10:6399–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Q, Dai L, Wang Y et al (2021) Anti-PD1/PDL1 IgG subclass distribution in ten cancer types and anti-PD1 IgG4 as biomarker for the long time survival in NSCLC with anti-PD1 therapy. Cancer Immunol Immunother 71:1681–1691

    Article  PubMed  Google Scholar 

  • Thai AA, Solomon BJ, Sequist LV (2021) Lung cancer. Lancet 398:535–554

    Article  PubMed  Google Scholar 

  • Tian Y, Zhai X, Yan W, Zhu H, Yu J (2021) Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med 10:3–14

    Article  CAS  PubMed  Google Scholar 

  • Toi Y, Sugawara S, Sugisaka J et al (2019) Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol 5:376–383

    Article  PubMed  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavalà T, Catino A, Pizzutilo P, Longo V, Galetta D (2021) Gender differences and immunotherapy outcome in advanced lung cancer. Int J Mol Sci 22:11942

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallstrom G, Anderson KS, LaBaer J (2013) Biomarker discovery for heterogeneous diseases. Cancer Epidemiol Biomarkers Prev 22:747–755

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao X, Wang Y et al (2020a) circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis 11:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhuang R, Ma H et al (2020b) The diagnostic value of a seven-autoantibody panel and a nomogram with a scoring table for predicting the risk of non-small-cell lung cancer. Cancer Sci 111:1699–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YN, Lee HH, Hsu JL, Yu D, Hung MC (2020c) The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci 27:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Kashaninejad N, Masud MK et al (2019) Autoantibodies as diagnostic and prognostic cancer biomarker: detection techniques and approaches. Biosens Bioelectron 139:111315

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Li X, Ren T, Yin Y (2019) Autoantibodies as diagnostic biomarkers for lung cancer: a systematic review. Cell Death Discov 5:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaenker P, Gray ES, Ziman MR (2016) Autoantibody production in cancer-the humoral immune response toward autologous antigens in cancer patients. Autoimmun Rev 15:477–483

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu M, Zhang X, Wang Y, Dai L (2021a) Autoantibodies to tumor-associated antigens in lung cancer diagnosis. Adv Clin Chem 103:1–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li J, Wang Y et al (2021b) A diagnostic model with IgM autoantibodies and carcinoembryonic antigen for early detection of lung adenocarcinoma. Front Immunol 12:728853

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Leading Talents of Science and Technology Innovation in Henan Province (Grant Number 20420051008), the National Natural Science Foundation of China (Grant Number 8167291), the Key Project of Discipline Construction of Zhengzhou University (Grant Number XKZDQY202009).

Author information

Authors and Affiliations

Authors

Contributions

LPD supervised the study and approved the final version of the manuscript. JQL and ML performed experiments. JQL wrote the paper. LTJ and YTZ collected the data. XZ and TY interpreted the data. ZW and FFL collected the samples. JQL analyzed the data.

Corresponding author

Correspondence to Liping Dai.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Ethics statement

Approval of the research protocol by the First Affiliated Hospital of Zhengzhou University.

Informed consent

All participants were signed the informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2746 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, M., Zhang, X. et al. Plasma autoantibodies IgG and IgM to PD1/PDL1 as potential biomarkers and risk factors of lung cancer. J Cancer Res Clin Oncol 149, 4465–4475 (2023). https://doi.org/10.1007/s00432-022-04360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04360-z

Keywords

Navigation