Skip to main content

Advertisement

Log in

Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

CD47, a transmembrane protein, acts as a “do not eat me” signal that is overexpressed in many tumor cell types, thereby forming a signaling axis with its ligand signal regulatory protein alpha (SIRPα) and enabling the tumor cells to escape from macrophage-mediated phagocytosis. Several clinical trials with CD47 targeting agents are underway and have achieved impressive results preliminarily. However, hematotoxicity (particularly anemia) has emerged as the most common side effect that cannot be neglected. In the development of CD47 targeting agents, various methods have been used to mitigate this toxicity. In this review, we summarized five strategies used to alleviate CD47 blockade-induced hematotoxicity, as follows: change in the mode of administration; dual targeting bispecific antibodies of CD47; CD47 antibodies/SIRPα fusion proteins with negligible red blood cell binding; anti-SIRPα antibodies; and glutaminyl-peptide cyclotransferase like inhibitors. With these strategies, the development of CD47 targeting agents can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ADCP:

Antibody-dependent cellular phagocytosis

CD19:

Cluster of differentiation 19

CD20:

Cluster of differentiation 20

CD47:

Cluster of differentiation 47

CTLA-4:

Cytotoxic T lymphocyte-associated molecule-4

DLBCL:

Diffuse large B-cell lymphoma

EGFR:

Epidermal growth factor receptor

HER2:

Human epidermal growth factor receptor-2

MTD:

Maximum tolerated dose

PD-1:

Programmed cell death receptor-1

PD-L1:

Programmed cell death ligand-1

QPCT:

Glutaminyl-peptide cyclotransferase

QPCTL:

Glutaminyl-peptide cyclotransferase like

RBC:

Red blood cell

SIRPα:

Signal regulatory protein alpha

SIRPβ:

Signal regulatory protein beta

SIRPγ:

Signal regulatory protein gamma

TAA:

Tumor-associated antigens

References

  • Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N et al (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 379(18):1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agoram B, Wang B, Sikic BI, Lakhani NJ, Patnaik A, Liu J et al (2018) Pharmacokinetics of Hu5F9-G4, a first-in-class anti-CD47 antibody, in patients with solid tumors and lymphomas. J Clin Oncol 36(15_suppl):2525

    Article  Google Scholar 

  • Ansell S, Chen RW, Flinn IW, Maris MB, O’Connor OA, Johnson LD et al (2016) A phase 1 study of TTI-621, a novel immune checkpoint inhibitor targeting CD47, in patients with relapsed or refractory hematologic malignancies. Blood 128(22):1812

    Article  Google Scholar 

  • Ansell SM, Flinn IW, Maris MB, O’Connor OA, Lesokhin A, Advani AS et al (2017) TTI-621 (SIRPαFc), an immune checkpoint inhibitor blocking the CD47 “do not eat” signal, induces objective responses in patients with advanced, relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Blood 130(Supplement 1):4116

    Google Scholar 

  • Ansell SM, Maris MB, Lesokhin AM, Chen RW, Flinn IW, Sawas A et al (2021) Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 27(8):2190–2199

    Article  CAS  PubMed  Google Scholar 

  • Arias CF, Arias CF (2017) How do red blood cells know when to die? R Soc Open Sci 4(4):160850

    Article  PubMed  PubMed Central  Google Scholar 

  • Barazi HO, Li Z, Cashel JA, Krutzsch HC, Annis DS, Mosher DF et al (2002) Regulation of integrin function by CD47 ligands. Differential effects on alpha vbeta 3 and alpha 4beta1 integrin-mediated adhesion. J Biol Chem 277(45):42859–42866

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Eichentopf R, Sedlmeier R, Waniek A, Cynis H, Koch B et al (2016) IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes. Biol Chem 397(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Bouchlaka MN, Puro R, Capoccia B, Donio M, Hiebsch R, Carter AJ et al (2018) Development of AO-176, a next generation humanized anti-CD47 antibody with novel anti-cancer properties and negligible binding to red blood cells. Eur J Cancer 103:76

    Google Scholar 

  • Bruce LJ, Ghosh S, King MJ, Layton DM, Mawby WJ, Stewart GW et al (2002) Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood 100(5):1878–1885

    Article  CAS  PubMed  Google Scholar 

  • Buatois V, Johnson Z, Salgado-Pires S, Papaioannou A, Hatterer E, Chauchet X et al (2018) Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-Cell lymphoma and leukemia. Mol Cancer Ther 17(8):1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y et al (2017) SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544(7651):493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JY, McKenna KM, Choi TS, Duan J, Brown L, Stewart JJ et al (2018) RBC-specific CD47 pruning confers protection and underlies the transient anemia in patients treated with anti-CD47 antibody 5F9. Blood 132(Supplement 1):2327

    Article  Google Scholar 

  • Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H et al (2019) In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol 14(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Dheilly E, Moine V, Broyer L, Salgado-Pires S, Johnson Z, Papaioannou A et al (2017) Selective blockade of the ubiquitous checkpoint receptor CD47 Is enabled by dual-targeting bispecific antibodies. Mol Ther 25(2):523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dheilly E, Majocchi S, Moine V, Didelot G, Broyer L, Calloud S et al (2018) Tumor-directed blockade of CD47 with bispecific antibodies induces adaptive antitumor immunity. Antibodies (basel) 7(1):3

    Article  CAS  Google Scholar 

  • Durand J, Gauttier V, Morello A, Pengam S, Vanhove B, Poirier N (2018) Abstract 1753: SIRPa inhibition monotherapy leads to dramatic change in solid tumor microenvironment and prevents metastasis development. Cancer Res 78(13 Supplement):1753

    Article  Google Scholar 

  • Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL (2019) Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 19(10):568–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes HP, Cesar CL, Barjas-Castro ML (2011) Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter 33(4):297–301

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262(1):193–215

    Article  CAS  PubMed  Google Scholar 

  • Gauttier V, Pengam S, Durand J, Morello A, Conchon S, Vanhove B et al (2018) Abstract 1684: Selective SIRPa blockade potentiates dendritic cell antigen cross-presentation and triggers memory T-cell antitumor responses. Cancer Res 78(13 Supplement):1684

    Article  Google Scholar 

  • Gauttier V, Pengam S, Durand J, Biteau K, Mary C, Morello A et al (2020) Selective SIRPalpha blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. J Clin Invest 130(11):6109–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram JR, Blomberg OS, Sockolosky JT, Ali L, Schmidt FI, Pishesha N et al (2017) Localized CD47 blockade enhances immunotherapy for murine melanoma. Proc Natl Acad Sci USA 114(38):10184–10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinnouchi F, Yamauchi T, Yurino A, Nunomura T, Nakano M, Iwamoto C et al (2020) Establishment of a human SIRPA knock-in xenograft mouse model to study human hematopoietic and cancer stem cells. Blood 135(19):1661–1672

    Article  PubMed  Google Scholar 

  • Johnson LDS, Banerjee S, Kruglov O, Viller NN, Horwitz SM, Lesokhin A et al (2019) Targeting CD47 in Sezary syndrome with SIRPalphaFc. Blood Adv 3(7):1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz BZ, Herishanu Y (2014) Therapeutic targeting of CD19 in hematological malignancies: past, present, future and beyond. Leuk Lymphoma 55(5):999–1006

    Article  CAS  PubMed  Google Scholar 

  • Kauder SE, Kuo TC, Harrabi O, Chen A, Sangalang E, Doyle L et al (2018) ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS ONE 13(8):e0201832

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Kuznetsova SA, Pendrak ML, Sipes JM, Romeo MJ, Li Z et al (2011) Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J Biol Chem 286(17):14991–15002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killian ML (2014) Hemagglutination assay for influenza virus. Methods Mol Biol 1161:3–9

    Article  PubMed  Google Scholar 

  • Kwong LS, Brown MH, Barclay AN, Hatherley D (2014) Signal-regulatory protein alpha from the NOD mouse binds human CD47 with an exceptionally high affinity—implications for engraftment of human cells. Immunology 143(1):61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg FP, Gresham HD, Schwarz E, Brown EJ (1993) Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 123(2):485–496

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L et al (2015) Pre-clinical development of a humanized Anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE 10(9):e0137345

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Guo H, Xu J, Qin T, Guo Q, Gu N et al (2018a) Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses. Mabs 10(2):315–324

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu L, Ren Z, Yang K, Xu H, Luan Y et al (2018b) Dual targeting of innate and adaptive checkpoints on tumor cells limits immune evasion. Cell Rep 24(8):2101–2111

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chang Y, He X, Cai Y, Jiang H, Jia R et al (2020) CD47 enhances cell viability and migration ability but inhibits apoptosis in endometrial carcinoma cells via the PI3K/Akt/mTOR signaling pathway. Front Oncol 10:1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Logtenberg MEW, Jansen JHM, Raaben M, Toebes M, Franke K, Brandsma AM et al (2019) Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPalpha axis and a target for cancer immunotherapy. Nat Med 25(4):612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Zhu M, Gai J, Li G, Chang Q, Qiao P et al (2020) Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology 18(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mair B, Aldridge PM, Atwal RS, Philpott D, Zhang M, Masud SN et al (2019) High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat Biomed Eng 3(10):796–805

    Article  CAS  PubMed  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ et al (2018) Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep 23(13):3946–59 e6

    Article  CAS  PubMed  Google Scholar 

  • McCracken MN, Cha AC, Weissman IL (2015) Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “Don’t Eat Me” signals. Clin Cancer Res 21(16):3597–3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Z, Wang Z, Guo B, Cao W, Shen H (2019) TJC4, a differentiated anti-CD47 antibody with novel epitope and RBC sparing properties. Blood 134(Supplement_1):4063

    Article  Google Scholar 

  • Mohammed R, Milne A, Kayani K, Ojha U (2019) How the discovery of rituximab impacted the treatment of B-cell non-Hodgkin’s lymphomas. J Blood Med 10:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouro-Chanteloup I, Delaunay J, Gane P, Nicolas V, Johansen M, Brown EJ et al (2003) Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood 101(1):338–344

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Gonzalez HD, Cacciola R, Aikawa A, Yaqoob MM, Puliatti C (2014) ABO incompatible renal transplants: good or bad? World J Transplant 4(1):18–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP (2000) Role of CD47 as a marker of self on red blood cells. Science 288(5473):2051–2054

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Oldenborg PA (2008) CD47 on experimentally senescent murine RBCs inhibits phagocytosis following Fcgamma receptor-mediated but not scavenger receptor-mediated recognition by macrophages. Blood 112(10):4259–4267

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Bruhns P, Frazier WA, Ravetch JV, Oldenborg PA (2005) Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia. Blood 105(9):3577–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oronsky B, Cabrales P, Caroen S, Guo X, Scribner C, Oronsky A et al (2021) RRx-001, a downregulator of the CD47- SIRPalpha checkpoint pathway, does not cause anemia or thrombocytopenia. Expert Opin Drug Metab Toxicol 17(4):355–357

    Article  CAS  PubMed  Google Scholar 

  • Petrova PS, Viller NN, Wong M, Pang X, Lin GH, Dodge K et al (2017) TTI-621 (SIRPalphaFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res 23(4):1068–1079

    Article  CAS  PubMed  Google Scholar 

  • Pettersen RD, Hestdal K, Olafsen MK, Lie SO, Lindberg FP (1999) CD47 signals T cell death. J Immunol 162(12):7031–7040

    Article  CAS  PubMed  Google Scholar 

  • Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, Narayanan C et al (2015) A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. Mabs 7(5):946–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccione EC, Juarez S, Tseng S, Liu J, Stafford M, Narayanan C et al (2016) SIRPalpha-antibody fusion proteins selectively bind and eliminate dual antigen-expressing tumor cells. Clin Cancer Res 22(20):5109–5119

    Article  CAS  PubMed  Google Scholar 

  • Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT et al (2020) Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther 19(3):835–846

    Article  CAS  PubMed  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer JP, George BM et al (2017) Anti-SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci USA 114(49):E10578–E10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo C, Caruso C, Vasto S (2014) Possible role of ABO system in age-related diseases and longevity: a narrative review. Immun Ageing 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallman DA, Asch AS, Al Malki MM, Lee DJ, Donnellan WB, Marcucci G et al (2019) The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: ongoing phase 1b results. American Society of Hematology, Washington

    Google Scholar 

  • Sallman DA, Malki MA, Asch AS, Lee DJ, Kambhampati S, Donnellan WB et al (2020) Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: phase Ib results. J Clin Oncol 38(15_suppl):7507

    Article  Google Scholar 

  • Scheltens P, Hallikainen M, Grimmer T, Duning T, Gouw AA, Teunissen CE et al (2018) Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res Ther 10(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz AL, Nath PR, Allgauer M, Lessey-Morillon EC, Sipes JM, Ridnour LA et al (2019) Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of mice bearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunol Immunother 68(11):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Chai Y, Duan X, Bi X, Huang Q, Wang Q et al (2020) The identification of a CD47-blocking “hotspot” and design of a CD47/PD-L1 dual-specific antibody with limited hemagglutination. Signal Transduct Target Ther 5:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D et al (2019) First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol 37(12):946–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim J, Sockolosky JT, Sangalang E, Izquierdo S, Pedersen D, Harriman W et al (2019) Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPalpha. Mabs 11(6):1036–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Tsai R, Sen S, Dahl KN, Discher DE (2006) Membrane mobility and clustering of Integrin Associated Protein (IAP, CD47)–major differences between mouse and man and implications for signaling. Blood Cells Mol Dis 36(3):364–372

    Article  CAS  PubMed  Google Scholar 

  • Veillette A, Chen J (2018) SIRPalpha-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 39(3):173–184

    Article  CAS  PubMed  Google Scholar 

  • Velliquette RW, Aeschlimann J, Kirkegaard J, Shakarian G, Lomas-Francis C, Westhoff CM (2019) Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion 59(2):730–737

    Article  CAS  PubMed  Google Scholar 

  • Voets E, Parade M, Lutje Hulsik D, Spijkers S, Janssen W, Rens J et al (2019) Functional characterization of the selective pan-allele anti-SIRPalpha antibody ADU-1805 that blocks the SIRPalpha-CD47 innate immune checkpoint. J Immunother Cancer 7(1):340

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W et al (2020a) Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother 70(2):365–376

    Article  PubMed  Google Scholar 

  • Wang H, Sun Y, Zhou X, Chen C, Jiao L, Li W et al (2020b) CD47/SIRPalpha blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J Immunother Cancer 8(2):e000905

    Article  PubMed  PubMed Central  Google Scholar 

  • Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109(17):6662–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Weng L, Zhang T, Tian H, Fang L, Teng H et al (2019) Identification of Glutaminyl Cyclase isoenzyme isoQC as a regulator of SIRPalpha-CD47 axis. Cell Res 29(6):502–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanagita T, Murata Y, Tanaka D, Motegi SI, Arai E, Daniwijaya EW et al (2017) Anti-SIRPalpha antibodies as a potential new tool for cancer immunotherapy. JCI Insight 2(1):e89140

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo R, Chen Q, Liu Y, Zhang P, Zhang Z et al (2018) A novel bispecific antibody fusion protein co-targeting EGFR and CD47 with enhanced therapeutic index. Biotechnol Lett 40(5):789–795

    Article  CAS  PubMed  Google Scholar 

  • Yu WB, Ye ZH, Chen X, Shi JJ, Lu JJ (2020) The development of small-molecule inhibitors targeting CD47. Drug Discov Today 26(2):561–568

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express great thanks to Dr. Le-Le Zhang for the language polishing to our manuscript.

Funding

This work was funded by The Science and Technology Development Fund, Macau SAR (File no. 0129/2019/A3) and was partially supported by National Natural Science Foundation of China (81973516).

Author information

Authors and Affiliations

Authors

Contributions

Y-CC and WS wrote the main manuscript text. Y-CC drew the figures. J-JS, Y-CC and WS collected and analyzed the data. J-JL and J-JS provided suggestions and revisions. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jia-Jie Shi or Jin-Jian Lu.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors approved the final manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Shi, W., Shi, JJ. et al. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective. J Cancer Res Clin Oncol 148, 1–14 (2022). https://doi.org/10.1007/s00432-021-03815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-021-03815-z

Keywords

Navigation