Skip to main content

Advertisement

Log in

Osteoporosis in children and adolescents: how to treat and monitor?

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Osteoporosis is a condition of increased bone fragility associated with fractures. Apart from primary genetic osteoporotic conditions, secondary osteoporosis in children is being increasingly recognized. As a result, there is growing interest in its prevention and treatment. Important goals of care are to prevent fractures, increase bone mass and trabecular and cortical thickness, reshape vertebral fractures, prevent (or correct) skeletal deformities, and improve mobility, independence, and quality of life. Secondary pediatric osteoporosis is often of multifactorial origin since affected children frequently have more than one acquired factor that is detrimental to bone health. Typical conditions causing osteoporosis are leukemias, progressive muscle or neurological disorders, as well as chronic inflammatory conditions and their treatment. Management of children with osteoporosis involves a multidisciplinary team involving pediatric experts from different subspecialties. With regard to prevention and early intervention, it is important to provide optimal management of any underlying systemic conditions including avoidance, or dose-reduction, of osteotoxic medications. Basic supporting life-style measures, such as appropriate nutrition, including adequate calcium intake and vitamin D, and physical activity are recommended, where possible. When pediatric treatment criteria for osteoporosis are met, antiresorptive drugs constitute the first pharmacological line treatment.

Conclusion: This clinical review focuses on the prevention, treatment, and follow-up of children with, or at risk of developing, osteoporosis and the transition from pediatric to adult care.

What is Known:

• Osteoporosis and associated fractures can cause significant morbidity and reduce the quality of life.

• The developing skeleton has huge potential for recovery and reshaping, thus early detection of fractures, assessment of recovery potential, and treatment of children with osteoporosis can prevent future fractures, deformities, and scoliosis, improve function and mobility, and reduce pain.

What is New:

• Osteoporosis in children and adolescents requires a multidisciplinary approach with a thorough assessment of recovery potential, and indication for therapy should be personalized.

• Although bisphosphonates still represent the drug most commonly used to increase bone mass, improve mobility, and reduce pain and recurrence of fractures, new agents are being developed and could be beneficial in children with specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

BPs:

Bisphosphonates

DMD:

Duchenne muscular dystrophy

DXA:

Dual-energy x-ray absorptiometry

GCs:

Glucocorticoids

GCTB:

Giant cell tumor of the bone

ISCD:

International Society for Clinical Densitometry

JIO:

Juvenile idiopathic osteoporosis

OI:

Osteogenesis imperfecta

ONJ:

Osteonecrosis of the jaw

VFA:

Vertebral fractures assessment

VFs:

Vertebral fractures

WBV:

Whole body vibration therapy

References

  1. Ciancia S, van Rijn RR, Hogler W, Appelman-Dijkstra NM, Boot AM, Sas TCJ, Renes JS (2022) Osteoporosis in children and adolescents: when to suspect and how to diagnose it. Eur J Pediatr 181:2549–2561. https://doi.org/10.1007/s00431-022-04455-2

    Article  Google Scholar 

  2. El-Gazzar A, Hogler W (2021) Mechanisms of bone fragility: from osteogenesis imperfecta to secondary osteoporosis Int J Mol Sci 22. https://doi.org/10.3390/ijms22020625

  3. Biggin A, Munns CF (2014) Osteogenesis imperfecta: diagnosis and treatment. Curr Osteoporos Rep 12:279–288. https://doi.org/10.1007/s11914-014-0225-0

    Article  CAS  Google Scholar 

  4. Hurley T, Zareen Z, Stewart P, McDonnell C, McDonald D, Molloy E (2021) Bisphosphonate use in children with cerebral palsy. Cochrane Database Syst Rev 7:CD012756. https://doi.org/10.1002/14651858.CD012756.pub2

  5. Weber DR (2020) Bone health in childhood chronic disease. Endocrinol Metab Clin North Am 49:637–650. https://doi.org/10.1016/j.ecl.2020.07.002

    Article  Google Scholar 

  6. Bell JM, Shields MD, Watters J, Hamilton A, Beringer T, Elliott M, Quinlivan R, Tirupathi S, Blackwood B (2017) Interventions to prevent and treat corticosteroid-induced osteoporosis and prevent osteoporotic fractures in Duchenne muscular dystrophy. Cochrane Database Syst Rev 1:CD010899. https://doi.org/10.1002/14651858.CD010899.pub2

  7. Saraff V, Hogler W (2015) Osteoporosis in children: diagnosis and management. Eur J Endocrinol 173:R185-197. https://doi.org/10.1530/EJE-14-0865

    Article  CAS  Google Scholar 

  8. Gonzalez Ballesteros LF, Ma NS, Gordon RJ, Ward L, Backeljauw P, Wasserman H, Weber DR, DiMeglio LA, Gagne J, Stein R, Cody D, Simmons K, Zimakas P, Topor LS, Agrawal S, Calabria A, Tebben P, Faircloth R, Imel EA, Casey L, Carpenter TO (2017) Unexpected widespread hypophosphatemia and bone disease associated with elemental formula use in infants and children. Bone 97:287–292. https://doi.org/10.1016/j.bone.2017.02.003

    Article  CAS  Google Scholar 

  9. Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M, Drug, Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine S (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122:398–417. https://doi.org/10.1542/peds.2007-1894

    Article  Google Scholar 

  10. Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA (2014) Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 29:2161–2181. https://doi.org/10.1002/jbmr.2254

    Article  Google Scholar 

  11. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, Michigami T et al (2016) Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 101:394–415. https://doi.org/10.1210/jc.2015-2175

    Article  CAS  Google Scholar 

  12. Högler W, Baumann U, Kelly D (2012) Endocrine and bone metabolic complications in chronic liver disease and after liver transplantation in children. J Pediatr Gastroenterol Nutr 54:313–321. https://doi.org/10.1097/MPG.0b013e31823e9412

    Article  CAS  Google Scholar 

  13. Reid IR (2017) Vitamin D effect on bone mineral density and fractures. Endocrinol Metab Clin North Am 46:935–945. https://doi.org/10.1016/j.ecl.2017.07.005

    Article  Google Scholar 

  14. Daly RM, Bass SL (2006) Lifetime sport and leisure activity participation is associated with greater bone size, quality and strength in older men. Osteoporos Int 17:1258–1267. https://doi.org/10.1007/s00198-006-0114-1

    Article  CAS  Google Scholar 

  15. Sayar Y, Arikan FI, Tasar MA, Dallar Y (2015) Effect of sportive activity on bone mineral density during adolescence. Türk Fiz Tip Rehab Derg 61:120–124. https://doi.org/10.5152/tftrd.2015.81905

    Article  Google Scholar 

  16. Dubnov-Raz G, Azar M, Reuveny R, Katz U, Weintraub M, Constantini NW (2015) Changes in fitness are associated with changes in body composition and bone health in children after cancer. Acta Paediatr 104:1055–1061. https://doi.org/10.1111/apa.13052

    Article  Google Scholar 

  17. Hough JP, Boyd RN, Keating JL (2010) Systematic review of interventions for low bone mineral density in children with cerebral palsy. Pediatrics 125:e670-678. https://doi.org/10.1542/peds.2009-0292

    Article  Google Scholar 

  18. Hoyer-Kuhn H, Semler O, Stark C, Struebing N, Goebel O, Schoenau E (2014) A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact 14:445–453

    CAS  Google Scholar 

  19. Semler O, Fricke O, Vezyroglou K, Stark C, Stabrey A, Schoenau E (2008) Results of a prospective pilot trial on mobility after whole body vibration in children and adolescents with osteogenesis imperfecta. Clin Rehabil 22:387–394. https://doi.org/10.1177/0269215507080763

    Article  Google Scholar 

  20. Hogler W, Scott J, Bishop N, Arundel P, Nightingale P, Mughal MZ, Padidela R, Shaw N, Crabtree N (2017) The effect of whole body vibration training on bone and muscle function in children with osteogenesis imperfecta. J Clin Endocrinol Metab 102:2734–2743. https://doi.org/10.1210/jc.2017-00275

    Article  Google Scholar 

  21. Bianchi ML, Vai S, Morandi L, Baranello G, Pasanisi B, Rubin C (2013) Effects of low-magnitude high-frequency vibration on bone density, bone resorption and muscular strength in ambulant children affected by duchenne muscular dystrophy. J Bone Miner Res 28:S341. https://doi.org/10.1002/central/CN-01064425/full?contentLanguage=en

    Article  Google Scholar 

  22. Söderpalm AC, Kroksmark AK, Magnusson P, Karlsson J, Tulinius M, Swolin-Eide D (2013) Whole body vibration therapy in patients with Duchenne muscular dystrophy − A prospective observational study. J Musculoskelet Neuronal Interact 13:13–18

    Google Scholar 

  23. Petryk A, Polgreen LE, Grames M, Lowe DA, Hodges JS, Karachunski P (2017) Feasibility and tolerability of whole-body, low-intensity vibration and its effects on muscle function and bone in patients with dystrophinopathies: a pilot study. Muscle Nerve 55:875–883. https://doi.org/10.1002/mus.25431

    Article  Google Scholar 

  24. Ruck J, Chabot G, Rauch F (2010) Vibration treatment in cerebral palsy: a randomized controlled pilot study. J Musculoskelet Neuronal Interact 10:77–83

    CAS  Google Scholar 

  25. Saquetto M, Carvalho V, Silva C, Conceição C, Gomes-Neto M (2015) The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact 15:137–144

    CAS  Google Scholar 

  26. Tekin F, Kavlak E (2021) Short and long-term effects of whole-body vibration on spasticity and motor performance in children with hemiparetic cerebral palsy. Percept Mot Skills 128:1107–1129. https://doi.org/10.1177/0031512521991095

    Article  Google Scholar 

  27. Tupimai T, Peungsuwan P, Prasertnoo J, Yamauchi J (2016) Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy. J Phys Ther Sci 28:7–13. https://doi.org/10.1589/jpts.28.7

    Article  Google Scholar 

  28. Swolin-Eide D, Magnusson P (2020) Does whole-body vibration treatment make children’s bones stronger? Curr Osteoporos Rep 18:471–479. https://doi.org/10.1007/s11914-020-00608-0

    Article  Google Scholar 

  29. Galindo-Zavala R, Bou-Torrent R, Magallares-Lopez B, Mir-Perello C, Palmou-Fontana N, Sevilla-Perez B, Medrano-San Ildefonso M, Gonzalez-Fernandez MI, Roman-Pascual A, Alcaniz-Rodriguez P, Nieto-Gonzalez JC, Lopez-Corbeto M, Grana-Gil J (2020) Expert panel consensus recommendations for diagnosis and treatment of secondary osteoporosis in children. Pediatr Rheumatol Online J 18:20. https://doi.org/10.1186/s12969-020-0411-9

    Article  Google Scholar 

  30. Lee SL, Lim A, Munns C, Simm PJ, Zacharin M (2020) Effect of testosterone treatment for delayed puberty in Duchenne muscular dystrophy. Horm Res Paediatr 93:108–118. https://doi.org/10.1159/000508290

    Article  CAS  Google Scholar 

  31. Michigami T, Ozono K (2019) Roles of phosphate in skeleton. Front Endocrinol (Lausanne) 10:180. https://doi.org/10.3389/fendo.2019.00180

    Article  Google Scholar 

  32. Iolascon G, Moretti A (2022) The rationale for using neridronate in musculoskeletal disorders: from metabolic bone diseases to musculoskeletal pain. Int J Mol Sci 23 https://doi.org/10.3390/ijms23136921

  33. Papapoulos SE, Cremers SC (2007) Prolonged bisphosphonate release after treatment in children. N Engl J Med 356:1075–1076. https://doi.org/10.1056/NEJMc062792

    Article  CAS  Google Scholar 

  34. Simm PJ, Biggin A, Zacharin MR, Rodda CP, Tham E, Siafarikas A, Jefferies C, Hofman PL, Jensen DE, Woodhead H, Brown J, Wheeler BJ, Brookes D, Lafferty A, Munns CF, Group ABMW (2018) Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health 54:223–233. https://doi.org/10.1111/jpc.13768

    Article  Google Scholar 

  35. Bishop N, Adami S, Ahmed SF, Antón J, Arundel P, Burren CP, Devogelaer JP, Hangartner T, Hosszú E, Lane JM, Lorenc R, Mäkitie O, Munns CF, Paredes A, Pavlov H, Plotkin H, Raggio CL, Reyes ML, Schoenau E, Semler O, Sillence DO, Steiner RD (2013) Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet 382:1424–1432. https://doi.org/10.1016/s0140-6736(13)61091-0

    Article  CAS  Google Scholar 

  36. Högler W, Yap F, Little D, Ambler G, McQuade M, Cowell CT (2004) Short-term safety assessment in the use of intravenous zoledronic acid in children. J Pediatr 145:701–704. https://doi.org/10.1016/j.jpeds.2004.06.066

    Article  CAS  Google Scholar 

  37. Munns CF, Rauch F, Mier RJ, Glorieux FH (2004) Respiratory distress with pamidronate treatment in infants with severe osteogenesis imperfecta. Bone 35:231–234. https://doi.org/10.1016/j.bone.2004.03.008

    Article  CAS  Google Scholar 

  38. Ward L, Tricco AC, Phuong P, Cranney A, Barrowman N, Gaboury I, Rauch F, Tugwell P, Moher D (2007) Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev:CD005324. https://doi.org/10.1002/14651858.CD005324.pub2

  39. Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH (2004) Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 19:1779–1786. https://doi.org/10.1359/jbmr.040814

    Article  CAS  Google Scholar 

  40. Anam EA, Rauch F, Glorieux FH, Fassier F, Hamdy R (2015) Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 30:1362–1368. https://doi.org/10.1002/jbmr.2486

    Article  CAS  Google Scholar 

  41. Land C, Rauch F, Munns CF, Sahebjam S, Glorieux FH (2006) Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone 39:901–906. https://doi.org/10.1016/j.bone.2006.04.004

    Article  CAS  Google Scholar 

  42. Land C, Rauch F, Montpetit K, Ruck-Gibis J, Glorieux FH (2006) Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J Pediatr 148:456–460. https://doi.org/10.1016/j.jpeds.2005.10.041

    Article  CAS  Google Scholar 

  43. Rauch F, Munns C, Land C, Glorieux FH (2006) Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab 91:1268–1274. https://doi.org/10.1210/jc.2005-2413

    Article  CAS  Google Scholar 

  44. Rauch F, Travers R, Glorieux FH (2006) Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. J Clin Endocrinol Metab 91:511–516. https://doi.org/10.1210/jc.2005-2036

    Article  CAS  Google Scholar 

  45. Sakkers R, Kok D, Engelbert R, van Dongen A, Jansen M, Pruijs H, Verbout A, Schweitzer D, Uiterwaal C (2004) Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet 363:1427–1431. https://doi.org/10.1016/s0140-6736(04)16101-1

    Article  CAS  Google Scholar 

  46. Rauch F, Travers R, Plotkin H, Glorieux FH (2002) The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Investig 110:1293–1299. https://doi.org/10.1172/jci200215952

    Article  CAS  Google Scholar 

  47. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R (1998) Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339:947–952

    Article  CAS  Google Scholar 

  48. Plotkin H, Rauch F, Bishop NJ, Montpetit K, Ruck-Gibis J, Travers R, Glorieux FH (2000) Pamidronate treatment of severe osteogenesis imperfecta in children under 3 years of age. J Clin Endocrinol Metab 85:1846–1850

    CAS  Google Scholar 

  49. Kim MJ, Kim SN, Lee IS, Chung S, Lee J, Yang Y, Lee I, Koh SE (2015) Effects of bisphosphonates to treat osteoporosis in children with cerebral palsy: a meta-analysis. J Pediatr Endocrinol Metab 28:1343–1350. https://doi.org/10.1515/jpem-2014-0527

    Article  CAS  Google Scholar 

  50. Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, Ward LM (2012) The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int 23:2703–2711. https://doi.org/10.1007/s00198-012-1911-3

    Article  CAS  Google Scholar 

  51. Ward LM, Choudhury A, Alos N, Cabral DA, Rodd C, Sbrocchi AM, Taback S, Padidela R, Shaw NJ, Hosszu E, Kostik M, Alexeeva E, Thandrayen K, Shenouda N, Jaremko JL, Sunkara G, Sayyed S, Aftring RP, Munns CF (2021) Zoledronic acid vs placebo in pediatric glucocorticoid-induced osteoporosis: a randomized, double-blind, phase 3 trial. J Clin Endocrinol Metab 106:e5222–e5235. https://doi.org/10.1210/clinem/dgab458

    Article  Google Scholar 

  52. Boyce AM (2017) Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep 15:283–292. https://doi.org/10.1007/s11914-017-0380-1

    Article  Google Scholar 

  53. ClinicalTrials.gov (2022) Open-label extension denosumab study in children and young adults with osteogenesis imperfecta. ClinicalTrials.gov Identifier: NCT03638128.

  54. Wang HD, Boyce AM, Tsai JY, Gafni RI, Farley FA, Kasa-Vubu JZ, Molinolo AA, Collins MT (2014) Effects of denosumab treatment and discontinuation on human growth plates. J Clin Endocrinol Metab 99:891–897. https://doi.org/10.1210/jc.2013-3081

    Article  CAS  Google Scholar 

  55. Kobayashi E, Setsu N (2015) Osteosclerosis induced by denosumab. The Lancet 385. https://doi.org/10.1016/s0140-6736(14)61338-6

  56. Hoyer-Kuhn H, Semler O, Schoenau E (2014) Effect of denosumab on the growing skeleton in osteogenesis imperfecta. J Clin Endocrinol Metab 99:3954–3955. https://doi.org/10.1210/jc.2014-3072

    Article  CAS  Google Scholar 

  57. Hoyer-Kuhn H, Franklin J, Allo G, Kron M, Netzer C, Eysel P, Hero B, Schoenau E, Semler O (2016) Safety and efficacy of denosumab in children with osteogenesis imperfecta - a first prospective trial. J Musculoskelet Neuronal Interact 16:24–32

    CAS  Google Scholar 

  58. Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O (2014) Two years’ experience with denosumab for children with Osteogenesis imperfecta type VI. Orphanet J Rare Dis 9:1–8. https://doi.org/10.1186/s13023-014-0145-1

    Article  Google Scholar 

  59. Uday S, Gaston CL, Rogers L, Parry M, Joffe J, Pearson J, Sutton D, Grimer R, Högler W (2018) Osteonecrosis of the jaw and rebound hypercalcemia in young people treated with denosumab for giant cell tumor of bone. J Clin Endocrinol Metab 103:596–603. https://doi.org/10.1210/jc.2017-02025

    Article  Google Scholar 

  60. Mariz B, Migliorati CA, Alves FA, Penteado FM, Carvalho NPF, Santos-Silva AR, Rocha AC (2021) Successful denosumab treatment for central giant cell granuloma in a 9-year-old child. Spec Care Dentist 41:519–525. https://doi.org/10.1111/scd.12588

    Article  Google Scholar 

  61. Horiuchi K, Kobayashi E, Mizuno T, Susa M, Chiba K (2021) Hypercalcemia following discontinuation of denosumab therapy: a systematic review. Bone Rep 15:101148. https://doi.org/10.1016/j.bonr.2021.101148

    Article  CAS  Google Scholar 

  62. Setsu N, Kobayashi E, Asano N, Yasui N, Kawamoto H, Kawai A, Horiuchi K (2016) Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab 34:118–122. https://doi.org/10.1007/s00774-015-0677-z

    Article  Google Scholar 

  63. Gossai N, Hilgers MV, Polgreen LE, Greengard EG (2015) Critical hypercalcemia following discontinuation of denosumab therapy for metastatic giant cell tumor of bone. Pediatr Blood Cancer 62:1078–1080. https://doi.org/10.1002/pbc.25393

    Article  Google Scholar 

  64. Harcus M, Aldridge S, Abudu A, Jeys L, Senniappan S, Morgan H, Pizer B (2020) The efficacy of denosumab in the management of a tibial paediatric aneurysmal bone cyst compromised by rebound hypercalcaemia. Case Rep Pediatr 2020:8854441. https://doi.org/10.1155/2020/8854441

    Article  Google Scholar 

  65. Kurucu N, Akyuz C, Ergen FB, Yalcin B, Kosemehmetoglu K, Ayvaz M, Varan A, Aydin B, Kutluk T (2018) Denosumab treatment in aneurysmal bone cyst: evaluation of nine cases. Pediatr Blood Cancer 65. https://doi.org/10.1002/pbc.26926

  66. Dürr HR, Grahneis F, Baur-Melnyk A, Knösel T, Birkenmaier C, Jansson V, Klein A (2019) Aneurysmal bone cyst: results of an off label treatment with Denosumab. BMC Musculoskelet Disord 20:456. https://doi.org/10.1186/s12891-019-2855-y

    Article  CAS  Google Scholar 

  67. Kocijan R, Haschka J, Feurstein J, Zwerina J (2021) New therapeutic options for bone diseases. Wien Med Wochenschr 171:120–125. https://doi.org/10.1007/s10354-020-00810-w

    Article  Google Scholar 

  68. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, Hofbauer LC, Lau E, Lewiecki EM, Miyauchi A, Zerbini CA, Milmont CE, Chen L, Maddox J, Meisner PD, Libanati C, Grauer A (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  Google Scholar 

  69. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427. https://doi.org/10.1056/NEJMoa1708322

    Article  CAS  Google Scholar 

  70. ClinicalTrials.gov Identifier: NCT04545554 (2020) Study to evaluate romosozumab in children and adolescents with osteogenesis imperfecta.

  71. ClinicalTrials.gov Identifier: NCT05125809 (2021) Study to assess the efficacy and safety of setrusumab in participants with osteogenesis imperfecta.

  72. Fassier FR (2021) Osteogenesis imperfecta-who needs rodding surgery? Curr Osteoporos Rep 19:264–270. https://doi.org/10.1007/s11914-021-00665-z

    Article  Google Scholar 

  73. Ashby E, Montpetit K, Hamdy RC, Fassier F (2016) Functional outcome of forearm rodding in children with osteogenesis imperfecta. J Pediatr Orthop 38:54–59. https://doi.org/10.1097/BPO.0000000000000724

    Article  Google Scholar 

  74. Sakkers RJ, Montpetit K, Tsimicalis A, Wirth T, Verhoef M, Hamdy R, Ouellet JA, Castelein RM, Damas C, Janus GJ, Nijhuis WH, Panzeri L, Paveri S, Mekking D, Thorstad K, Kruse RW (2021) A roadmap to surgery in osteogenesis imperfecta: results of an international collaboration of patient organizations and interdisciplinary care teams. Acta Orthop 92:608–614. https://doi.org/10.1080/17453674.2021.1941628

    Article  Google Scholar 

  75. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, Makitie O, Munns CF, Shaw N, International Society of Clinical D (2014) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom 17:275–280. https://doi.org/10.1016/j.jocd.2014.01.004

    Article  Google Scholar 

  76. Ward LM, Weber DR, Munns CF, Hogler W, Zemel BS (2020) A contemporary view of the definition and diagnosis of osteoporosis in children and adolescents. J Clin Endocrinol Metab 105:e2088–e2097. https://doi.org/10.1210/clinem/dgz294

  77. Trejo P, Rauch F (2016) Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int 27:3427–3437. https://doi.org/10.1007/s00198-016-3723-3

    Article  CAS  Google Scholar 

  78. Dwan K, Phillipi CA, Steiner RD, Basel D (2016) Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev 10:CD005088. https://doi.org/10.1002/14651858.CD005088.pub4

  79. Baroncelli GI, Vierucci F, Bertelloni S, Erba P, Zampollo E, Giuca MR (2013) Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab 31:533–543. https://doi.org/10.1007/s00774-013-0438-9

    Article  CAS  Google Scholar 

  80. Ward LM, Ma J, Lang B, Ho J, Alos N, Matzinger MA, Shenouda N et al (2018) Bone morbidity and recovery in children with acute lymphoblastic leukemia: results of a six-year prospective cohort study. J Bone Miner Res 33:1435–1443. https://doi.org/10.1002/jbmr.3447

    Article  CAS  Google Scholar 

  81. Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, Case LE, Cripe L, Hadjiyannakis S, Olson AK, Sheehan DW, Bolen J, Weber DR, Ward LM (2018) Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. The Lancet Neurology 17:347–361. https://doi.org/10.1016/s1474-4422(18)30025-5

    Article  Google Scholar 

  82. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S, Street N, Tomezsko J, Wagner KR, Ward LM, Weber DR (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet Neurology 17:251–267. https://doi.org/10.1016/s1474-4422(18)30024-3

    Article  Google Scholar 

  83. Bhardwaj A, Swe KM, Sinha NK, Osunkwo I (2016) Treatment for osteoporosis in people with ß-thalassaemia. Cochrane Database Syst Rev 3:Cd010429. https://doi.org/10.1002/14651858.CD010429.pub2

  84. Ward LM (2020) Glucocorticoid-induced osteoporosis: why kids are different. Front Endocrinol (Lausanne) 11:576. https://doi.org/10.3389/fendo.2020.00576

    Article  Google Scholar 

  85. Joseph S, Wang C, Di Marco M, Horrocks I, Abu-Arafeh I, Baxter A, Cordeiro N, McLellan L, McWilliam K, Naismith K, Stephen E, Ahmed SF, Wong SC (2019) Fractures and bone health monitoring in boys with Duchenne muscular dystrophy managed within the Scottish Muscle Network. Neuromuscul Disord 29:59–66. https://doi.org/10.1016/j.nmd.2018.09.005

    Article  Google Scholar 

  86. Gleeson H, Davis J, Jones J, O’Shea E, Clayton PE (2013) The challenge of delivering endocrine care and successful transition to adult services in adolescents with congenital adrenal hyperplasia: experience in a single centre over 18 years. Clin Endocrinol (Oxf) 78:23–28. https://doi.org/10.1111/cen.12053

    Article  Google Scholar 

  87. Godbout A, Tejedor I, Malivoir S, Polak M, Touraine P (2012) Transition from pediatric to adult healthcare: assessment of specific needs of patients with chronic endocrine conditions. Horm Res Paediatr 78:247–255. https://doi.org/10.1159/000343818

    Article  CAS  Google Scholar 

  88. Campbell F, Biggs K, Aldiss SK, O'Neill PM, Clowes M, McDonagh J, While A, Gibson F (2016) Transition of care for adolescents from paediatric services to adult health services. Cochrane Database Syst Rev 4:CD009794. https://doi.org/10.1002/14651858.CD009794.pub2

  89. Blum RW, Garell D, Hodgman CH, Jorissen TW, Okinow NA, Orr DP, Slap GB (1993) Transition from child-centered to adult health-care systems for adolescents with chronic conditions. A position paper of the Society for Adolescent Medicine. J Adolesc Health 14:570–576. https://doi.org/10.1016/1054-139x(93)90143-d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and to the literature search. The first draft of the manuscript was written by Silvia Ciancia and Judith S. Renes. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Silvia Ciancia.

Ethics declarations

Ethical approval

Not applicable.

Additional information

Communicated by Peter de Winter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciancia, S., Högler, W., Sakkers, R.J.B. et al. Osteoporosis in children and adolescents: how to treat and monitor?. Eur J Pediatr 182, 501–511 (2023). https://doi.org/10.1007/s00431-022-04743-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-022-04743-x

Keywords

Navigation