Skip to main content

Advertisement

Log in

High-mobility group box 1 (HMGB1) in childhood: from bench to bedside

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

High-mobility group box protein 1 (HMGB1) is a nonhistone nuclear protein that has a dual function. Inside the cell, HMGB1 binds DNA, regulating transcription and determining chromosomal architecture. Outside the cell, HMGB1 activates the innate system and mediates a wide range of physiological and pathological responses. HMGB1 exerts these actions through differential engagement of multiple surface receptors, including Toll-like receptor (TLR)2, TLR4, and receptor for advanced glycation end products (RAGE). HMGB1 is implicated as a late mediator of sepsis and is also involved in inflammatory and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Interestingly, HMGB1 was associated with tumor progression, becoming a potential therapeutic target, due to its involvement in the resistance to chemotherapy. Its implication on the pathogenesis of systemic vasculitis and inflammatory bowel diseases has also been evaluated. Moreover, it regulates neuroinflammation after traumatic brain injuries or cerebral infectious diseases. The aim of this review is to analyze these different roles of HMGB1, both in physiological and pathological conditions, discussing clinical and scientific implications in the field of pediatrics. Conclusion: HMGB1 plays a key role in several pediatric diseases, opening new scenarios for diagnostic biomarkers and therapeutic strategies development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Acute appendicitis

AGE:

Advanced glycation end products

AN:

Anorexia nervosa

ANCA:

Anti-neutrophil cytoplasmic antibodies

CSF:

Cerebrospinal fluid

CSS:

Churg–Strauss syndrome

CRP:

C-reactive protein

CD:

Crohn’s disease

DAMP:

Damage-associated molecular pattern

DCs:

Dendritic cells

HMGB1:

High-mobility group box 1

KD:

Kawasaki disease

JIA:

Juvenile idiopathic arthritis

IC:

Immune complexes

IBD:

Inflammatory bowel diseases

IFN:

Interferon

IL:

Interleukin

MPA:

Microscopic polyangiitis

MAPK:

Mitogen-activated protein kinases

NEC:

Necrotizing enterocolitis

NOD:

Nonobese diabetic

NF-κB:

Nuclear factor-kappa B

p-ANCAs:

Perinuclear anti-neutrophil cytoplasmic antibodies

RAGE:

Receptor for advanced glycation end products

RA:

Rheumatoid arthritis

SLE:

Systemic lupus erythematosus

TIM-3:

T cell immunoglobulin and mucin domain-3

TLR:

Toll-like receptor

TBI:

Traumatic brain injury

TGF:

Tumor growth factor

TNF:

Tumor necrosis factor

T1D:

Type 1 diabetes

UC:

Ulcerative colitis

WG:

Wegener granulomatosis

References

  1. Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165:2950–2954

    CAS  PubMed  Google Scholar 

  2. Aghai ZH, Saslow JG, Meniru C et al (2010) High-mobility group box-1 protein in tracheal aspirates from premature infants: relationship with bronchopulmonary dysplasia and steroid therapy. J Perinatol 30:610–615

    CAS  PubMed  Google Scholar 

  3. Agnello D, Wang H, Yang H, Tracey KJ, Ghezzi P (2002) HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion. Cytokine 18:231–236

    CAS  PubMed  Google Scholar 

  4. Akikusa JD, Schneider R, Harvey EA et al (2007) Clinical features and outcome of pediatric Wegener′s granulomatosis. Arthritis Rheum 57:837–844

    CAS  PubMed  Google Scholar 

  5. Albayrak Y, Albayrak A, Celik M et al (2011) High mobility group box protein-1 (HMGB-1) as a new diagnostic marker in patients with acute appendicitis. Scand J Trauma Resusc Emerg Med 19:27

    PubMed Central  PubMed  Google Scholar 

  6. Alleva LM, Yang H, Tracy KJ, Clark IA (2005) High mobility group box 1 (HMGB1) protein: possible amplification signal in the pathogenesis. R Soc Trop Med Hyg 99:171–174

    CAS  Google Scholar 

  7. Andersson U, Wang H, Palomblad K et al (2000) High mobility group 1 protein (HMG1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Arrigo T, Chirico V, Salpietro V et al (2013) High-mobility group protein B1: a new biomarker of metabolic syndrome in obese children. Eur J Endocrinol 168:631–638

    CAS  PubMed  Google Scholar 

  9. Asano T, Ichiki K, Koizumi S et al (2011) High mobility group box 1 in cerebrospinal fluid from several neurological diseases at early time points. Int J Neurosci 121:480–484

    PubMed  Google Scholar 

  10. Au AK, Aneja RK, Bell MJ et al (2012) Cerebrospinal fluid levels of high-mobility group box 1 and cytochrome C predict outcome after pediatric traumatic brain injury. J Neurotrauma 29:2013–2021

    PubMed Central  PubMed  Google Scholar 

  11. Avalos AM, Kiefer K, Tian J, Christensen S, Shlomchik M, Coyle AJ et al (2010) RAGE-independent autoreactive B cell activation in response to chromatin and HMGB1/DNA immune complexes. Autoimmunity 43:103--110

  12. Bachur RG, Hennelly K, Callahan MJ, Chen C, Monuteaux MC (2012) Diagnostic imaging and negative appendectomy rates in children: effects of age and gender. Pediatrics 129:877–884

    PubMed  Google Scholar 

  13. Barua M, Jenkins EC, Chen W, Kuizon S, Pullarkat RK, Junaid MA (2011) Glyoxalase I polymorphism rs2736654 causing the Ala111Glu substitution modulates enzyme activity-implications for autism. Autism Res 4:262–270

    PubMed Central  PubMed  Google Scholar 

  14. Berger RP, Bazaco MC, Wagner AK, Kochanek PM, Fabio A (2010) Trajectory analysis of serum biomarker concentrations facilitates outcome prediction after pediatric traumatic and hypoxemic brain injury. Dev Neurosci 32:396–405

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    CAS  PubMed  Google Scholar 

  16. Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:551–560

    Google Scholar 

  17. Bonthius DJ, Karacay B (2002) Meningitis and encephalitis in children. An update. Neurol Clin 20:1013–1038

    PubMed  Google Scholar 

  18. Boonyaratanakornkit V, Melvin V, Prendergast P et al (1998) High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 18:4471–4487

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533

    CAS  PubMed  Google Scholar 

  20. Boyer D, Vargas SO, Slattery D, Rivera-Sanchez YM, Colin AA (2006) Churg–Strauss syndrome in children: a clinical and pathologic review. Pediatrics 118:e914–e920

    PubMed  Google Scholar 

  21. Brunner HI, Gladman DD, Ibañez D, Urowitz MD, Silverman ED (2008) Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum 58:556–562

    PubMed  Google Scholar 

  22. Buhimschi CS, Baumbusch MA, Dulay AT et al (2009) Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol 175:958–975

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Buhimschi CS, Dulay AT, Abdel-Razeq S et al (2009) Fetal inflammatory response in women with proteomic biomarkers characteristic of intra-amniotic inflammation and preterm birth. BJOG 116:257–267

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high mobility group chromosomal proteins. Mol Cell Biol 19:5237–5246

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bustin M (2002) At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Sci STKE 51:E39

    Google Scholar 

  26. Bustin M, Reisch J, Einck L, Klippel JH (1982) Autoantibodies to nucleosomal protein; antibodies to HMG-17 in autoimmune disease. Science 215:1245–1247

    CAS  PubMed  Google Scholar 

  27. Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P (2009) Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J Leukoc Biol 86:609–615

    CAS  PubMed  Google Scholar 

  28. Carrol ED, Mankhambo LA, Jeffers G et al (2009) The diagnostic and prognostic accuracy of five markers of serious bacterial infection in Malawian children with signs of severe infection. PLoS One 4:e6621

    PubMed Central  PubMed  Google Scholar 

  29. Charre S, Rosmalen JC, Pelegri C et al (2012) Abnormalities in dendritic cell and macrophage accumulation in the pancreas of nonobese diabetic (NOD) mice during the early neonatal period. Histol Histopathol 17:393–401

    Google Scholar 

  30. Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P et al (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100:204--212

  31. Chen G, Li J, Qiang X et al (2005) Suppression of HMGB1 release by stearoyl lysophosphatidylcholine: an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 46:623–627

    CAS  PubMed  Google Scholar 

  32. Chen GY, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323:1722–1725

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Chiba S, Baghdadi M, Akiba H et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Choi J, Hyun JM, Jeon-Soo S (2011) Increased levels of HMGB1 and pro-inflammatory cytokines in children with febrile seizures. J Neuroinflammation 8:135

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ciucci A, Gabriele I, Percario ZA, Affabris E, Colizzi V, Mancino G (2011) HMGB1 and cord blood: its role as immuno-adjuvant factor in innate immunity. PLoS One 6:e23766

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Corcos M, Guilbaud O, Paterniti S et al (2003) Involvement of cytokines in eating disorders: a critical review of the human literature. Psychoneuroendocrinology 28:229–249

    CAS  PubMed  Google Scholar 

  37. Costello E, Saudan P, Winocour E, Pizer L, Beard P (1997) High mobility group chromosomal protein 1 binds to the adeno-associated virus replication protein (Rep) and promotes Rep-mediated site-specific cleavage of DNA, ATPase activity and transcriptional repression. EMBO J 16:5943–5954

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Devaraj S, Dasu MR, Park SH, Jialal I (2009) Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52:1665–1668

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Dubicke A, Andersson P, Fransson E et al (2010) High-mobility group box protein 1 and its signalling receptors in human preterm and term cervix. J Reprod Immunol 84:86–94

    CAS  PubMed  Google Scholar 

  40. Eguchi T, Nomura Y, Hashiguchi T et al (2009) An elevated value of high mobility group box 1 is a potential marker for poor response to high-dose of intravenous immunoglobulin treatment in patients with Kawasaki syndrome. Pediatr Infect Dis J 28:339–341

    PubMed  Google Scholar 

  41. Ellerman JE, Brown CK, de Vera M et al (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13:2836–2848

    CAS  PubMed  Google Scholar 

  42. Emanuele E, Boso M, Brondino N et al (2010) Increased serum levels of high mobility group box 1 protein in patients with autistic disorder. Prog Neuropsychopharmacol Biol Psychiatry 34:681–683

    CAS  PubMed  Google Scholar 

  43. Enstrom AM, Onore CE, Van de Water JA, Ashwood P (2010) Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav Immun 24:64–71

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H (2000) Regulation of cell migration by amphoterin. J Cell Sci 113:611–620

    CAS  PubMed  Google Scholar 

  45. Ford HR, Sorrells DL, Knisely AS (1996) Inflammatory cytokines, nitric oxide, and necrotizing enterocolitis. Semin Pediatr Surg 5:155–159

    CAS  PubMed  Google Scholar 

  46. Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119

    CAS  PubMed  Google Scholar 

  47. Garcia-Romo GS, Caielli S, Vega B et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20

    PubMed Central  PubMed  Google Scholar 

  48. Ge Y, Brown MG, Wang H, Fu SM (2012) Genetic approach to study lupus glomerulonephritis. Methods Mol Biol 900:271–290

    CAS  PubMed  Google Scholar 

  49. Goodwin GH, Sanders C, Johns EW (1973) A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38:14–19

    CAS  PubMed  Google Scholar 

  50. Güller U, Rosella L, McCall J, Brügger LE, Candinas D (2011) Negative appendicectomy and perforation rates in patients undergoing laparoscopic surgery for suspected appendicitis. Br J Surg 8:589–595

    Google Scholar 

  51. Hagiwara S, Iwasaka H, Uchino T, Noguchi T (2008) High mobility group box 1 induces a negative inotropic effect on the left ventricle in an isolated rat heart model of septic shock: a pilot study. Circ J 72:1012--1017

  52. Hauser WA (1994) The prevalence and incidence of convulsive disorders in children. Epilepsia 35:S1–S6

    PubMed  Google Scholar 

  53. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    CAS  PubMed  Google Scholar 

  54. Henes FO, Chen Y, Bley TA et al (2011) Correlation of serum level of high mobility group box 1 with the burden of granulomatous inflammation in granulomatosis with polyangiitis (Wegener′s). Ann Rheum Dis 70:1926–1929

    CAS  PubMed  Google Scholar 

  55. Hoshina T, Kusuhara K, Ikeda K, Mizuno Y, Saito M, Hara T (2008) High mobility group box 1 (HMGB1) and macrophage migration inhibitory factor (MIF) in Kawasaki disease. Scand J Rheumatol 37:445–449

    CAS  PubMed  Google Scholar 

  56. Huang J, Liu K, Yu Y et al (2012) Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy 8:275–277

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Huang J, Ni J, Liu K et al (2012) HMGB1 promotes drug resistance in osteosarcoma. Cancer Res 72:230–238

    CAS  PubMed  Google Scholar 

  58. Ito T, Kawahara K, Okamoto K et al (2008) Proteolytic cleavage of high mobility group box 1 protein by thrombin–thrombomodulin complexes. Arterioscler Thromb Vasc Biol 28:825–830

    Google Scholar 

  59. Janku F, McConkey DJ, Hong DS, Kurzrock R (2011) Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 8:528–539

    CAS  PubMed  Google Scholar 

  60. Jennette JC, Falk RJ, Andrassy K et al (1994) Nomenclature of systemic vasculitides: proposal of an international consensus conference. Arthritis Rheum 37:187–192

    CAS  PubMed  Google Scholar 

  61. Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower-Brooks S, Pullarkat RK (2004) Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 131:11–17

    PubMed Central  PubMed  Google Scholar 

  62. Kanakoudi-Tsakalidou F, Farmaki E, Tzimouli V et al (2014) Simultaneous changes in serum HMGB1 and IFN-α levels and in LAIR-1 expression on plasmatoid dendritic cells of patients with juvenile SLE. New therapeutic options? Lupus 23:305–312

    CAS  PubMed  Google Scholar 

  63. Kang R, Livesey KM, Zeh HJ, Lotze MT, Tang D (2011) Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy 7:1256–1258

    CAS  PubMed  Google Scholar 

  64. Kang R, Tang DL, Cao LZ, Yu Y, Zhang GY, Xiao XZ (2007) High mobility group box 1 is increased in children with acute lymphocytic leukemia and stimulates the release of tumor necrosis factor-alpha in leukemic cell. Zhonghua Er Ke Za Zhi 45:329–333

    PubMed  Google Scholar 

  65. Kato S, Hussein MH, Kakita H et al (2009) Edaravone, a novel free radical scavenger, reduces high-mobility group box 1 and prolongs survival in a neonatal sepsis model. Shock 32:586–592

    CAS  PubMed  Google Scholar 

  66. Klein-Gitelman M, Reiff A, Silverman ED (2002) Systemic lupus erythematosus in childhood. Rheum Dis Clin N Am 28:561–577

    Google Scholar 

  67. Koedel U (2009) Toll-like receptors in bacterial meningitis. Curr Top Microbiol Immunol 336:15–40

    CAS  PubMed  Google Scholar 

  68. Kokkola R, Sundberg E, Ulfgren AK et al (2002) High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum 46:2598–2603

    CAS  PubMed  Google Scholar 

  69. Li M, Song L, Gao X, Chang W, Qin X (2012) Toll-like receptor 4 on islet β cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes. Exp Mol Med 44:260–267

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Li J, Xie H, Wen T, Liu H, Zhu W, Chen X (2010) Expression of high mobility group box chromosomal protein 1 and its modulating effects on downstream cytokines in systemic lupus erythematosus. J Rheumatol 37:766–775

    CAS  PubMed  Google Scholar 

  71. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    CAS  PubMed  Google Scholar 

  72. Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX (2010) HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology 215:956–962

    CAS  PubMed  Google Scholar 

  73. Maroso M, Balosso S, Ravizza T et al (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419

    CAS  PubMed  Google Scholar 

  74. Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B et al (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173:307--313

  75. Miksa M, Wu R, Dong W et al (2009) Immature dendritic cell-derived exosomes rescue septic animals via milk fat globule epidermal growth factor–factor VIII. J Immunol 183:5983–5990

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Mishra K, Jacobs SE, Doyle LE, Garland SM (2006) Newer approaches to the diagnosis of early onset neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 91:F208–F212

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Musumeci D, Roviello GN, Montesarchio D (2014) An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 141:347–357

    CAS  PubMed  Google Scholar 

  78. Nakamura T, Yamada S, Yoshioka T (2012) Measurement of plasma concentration of high mobility group box1 (HMGB1) in early neonates and evaluation of its usefulness. Clin Chim Acta 413:237–239

    CAS  PubMed  Google Scholar 

  79. Newburger JW, Takahashi M, Gerber MA et al (2004) Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114:1708–1733

    PubMed  Google Scholar 

  80. Nishitani C, Mitsuzawa H, Hyakushima N, Sano H, Matsushima N, Kuroki Y (2005) The Toll-like receptor 4 region Glu24-Pro34 is critical for interaction with MD-2. Biochem Biophys Res Commun 328:586–590

    CAS  PubMed  Google Scholar 

  81. Noth I, Strek ME, Leff AR (2003) Churg–Strauss syndrome. Lancet 361:587–594

    PubMed  Google Scholar 

  82. Okazaki K, Kondo M, Kato M et al (2008) Elevation of high-mobility group box 1 concentration in asphyxiated neonates. Neonatology 94:105–109

    CAS  PubMed  Google Scholar 

  83. Okuma Y, Liu K, Wake H et al (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. doi:10.1002/ana.23602

    PubMed  Google Scholar 

  84. Ozonoff S, Iosif AM, Baguio F et al (2010) A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry 49:256–266

    PubMed Central  PubMed  Google Scholar 

  85. Palumbo R, Sampaolesi M, Marchis FD et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Park JS, Svetkauskaite D, He Q et al (2004) Involvement of TLR2 and TRL4 in cellular activation by high mobility group box 1 protein (HMGB1). J Biol Chem 279:7370–7376

    CAS  PubMed  Google Scholar 

  87. Parkkinen J, Rauvala H (1991) Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J Biol Chem 266:16730–16735

    CAS  PubMed  Google Scholar 

  88. Pavare J, Grope I, Kalnins I, Gardovska D (2010) High-mobility group box-1 protein, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in children with community acquired infections and bacteraemia: a prospective study. BMC Infect Dis 10:28

    PubMed Central  PubMed  Google Scholar 

  89. Raucci A, Cugusi S, Antonelli A et al (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727

    CAS  PubMed  Google Scholar 

  90. Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG (1993) Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res 21:3427–3436

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Romero R, Chaiworapongsa T, Alpay Savasan Z et al (2011) Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med 24:1444–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Rosenberg AM, Cordeiro DM (2000) Relationship between sex and antibodies to high mobility group proteins 1 and 2 in juvenile idiopathic arthritis. J Rheumatol 27:2489–2493

    CAS  PubMed  Google Scholar 

  93. Sakai E, Shimada-Sugawara M, Nishishita K, Fukuma Y, Naito M, Okamoto K et al (2012) Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis. J Cell Biochem 113:486--498

  94. Sanders MS, van Well GT, Ouburg S, Morré SA, van Furth AM (2012) Toll-like receptor 9 polymorphisms are associated with severity variables in a cohort of meningococcal meningitis survivors. BMC Infect Dis 12:112

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Schierbeck H, Pullerits R, Pruunsild C et al (2012) Evaluation of the danger signal HMGB1 as a potential biomarker in juvenile idiopathic arthritis (JIA): a preliminary study using the novel biobank jabba. Ann Rheum Dis 71:A10–A11

    Google Scholar 

  96. State MW, Neuroscience ŠN (2012) The emerging biology of autism spectrum disorders. Science 337:1301–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Steinhausen HC (2002) The outcome of anorexia nervosa in the 20th century. Am J Psychiatry 159:1284–1294

    PubMed  Google Scholar 

  98. Stern D, Yan SD, Yan SF, Schmidt AM (2002) Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 54:1615–1625

    CAS  PubMed  Google Scholar 

  99. Su X, Wang H, Zhao J, Pan H, Mao L (2011) Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-κB pathway after traumatic brain injury in the rat. Mediat Inflamm 2011:807142

    Google Scholar 

  100. Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360

    CAS  PubMed  Google Scholar 

  101. Taira T, Matsuyama W, Mitsuyama H et al (2007) Increased serum high mobility box-1 level in Churg–Strauss syndrome. Clin Exp Immunol 148:241–247

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Tang D, Kang R, Cao L et al (2008) A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med 36:291–295

    CAS  PubMed  Google Scholar 

  103. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev 249:158–175

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    CAS  PubMed  Google Scholar 

  105. Urbonaviciute V, Furnrohr BG, Meister S et al (2008) Induction of inflammatory and immuneresponses byHMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Vezzani A, Balosso S, Maroso M, Zardoni D, Noe′ F, Ravizza T (2010) ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs 11:43–50

    CAS  PubMed  Google Scholar 

  107. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743

    CAS  PubMed  Google Scholar 

  108. Vitali R, Stronati L, Negroni A et al (2011) Fecal HMGB1 is a novel marker of intestinal mucosal inflammation in pediatric inflammatory bowel disease. Am J Gastroenterol 106:2029–2040

    CAS  PubMed  Google Scholar 

  109. Walker JM, Gooderham K, Hastings JR, Mayes E, Johns EW (1980) The primary structures of non-histone chromosomal proteins HMG1 and 2. FEBS Lett 122:264–270

    CAS  PubMed  Google Scholar 

  110. Wang KY, Yu GF, Zhang ZY, Huang Q, Dong WQ (2012) Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury. Clin Chim Acta 413:1737–1741

    CAS  PubMed  Google Scholar 

  111. Watson RS, Carcillo JA (2005) Scope and epidemiology of pediatric sepsis. Pediatr Crit Care 6:3–4

    Google Scholar 

  112. Wibisono D, Csernok E, Lamprecht P, Holle JU, Gross WL, Moosig F (2010) Serum HMGB1 levels are increased in active Wegener’s granulomatosis and differentiate between active forms of ANCA-associated vasculitis. Ann Rheum Dis 69:1888–1889

    CAS  PubMed  Google Scholar 

  113. Wittemann B, Neuer G, Michels H, Truckenbrodt H, Bautz FA (1990) Autoantibodies to nonhistone chromosomal proteins HMG-1 and HMG-2 in sera of patients with juvenile rheumatoid arthritis. Arthritis Rheum 33:1378–1383

    CAS  PubMed  Google Scholar 

  114. Wu SF, Caplan M, Lin HC (2012) Necrotizing enterocolitis: old problem with new hope. Pediatr Neonatol 53:158–163

    PubMed  Google Scholar 

  115. Wu C, Sun H, Wang H et al (2012) Evaluation of high mobility group box 1 protein as a presurgical diagnostic marker reflecting the severity of acute appendicitis. Scand J Trauma Resusc Emerg Med 20:61

    PubMed Central  PubMed  Google Scholar 

  116. Yang H, Ochani M, Li J et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 101:296–301

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Yang L, Yu Y, Kang R et al (2012) Up-regulated autophagy by endogenous high mobility group box-1 promotes chemoresistance in leukemia cells. Leuk Lymphoma 53:315–322

    CAS  PubMed  Google Scholar 

  118. Yasuhara D, Hashiguchi T, Kawahara K et al (2007) High mobility group box 1 and refeeding-resistance in anorexia nervosa. Mol Psychiatry 12:976–977

    CAS  PubMed  Google Scholar 

  119. Yotov WV, St-Arnaud R (1992) Nucleotide sequence of a mouse cDNA encoding the nonhistonne chromosomal high mobility group protein-1 (HMG1). Nucleic Acids Res 20:3516

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Young C, Sharma R, Handfield M, Mai V, Neu J (2009) Biomarkers for infants at risk for necrotizing enterocolitis: clues to prevention? Pediatr Res 65:91R–97R

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Yu M, Wang H, Ding A et al (2006) HMGB1 signals through Toll-like receptor (TLR) 4 and TLR 2. Shock 26:174–179

    CAS  PubMed  Google Scholar 

  122. Zamora R, Grishin A, Wong C et al (2005) High-mobility group box 1 protein is an inflammatory mediator in necrotizing enterocolitis: protective effect of the macrophage deactivator semapimod. Am J Physiol Gastrointest Liver Physiol 289:G643–G652

    CAS  PubMed  Google Scholar 

  123. Zetterstrom CK, Bergman T, Rynnel-Dagöö B et al (2002) High mobility group box chromosomal protein 1 (HMGB1) is an antibacterial factor produced by the human adenoid. Pediatr Res 52:148–154

    PubMed  Google Scholar 

  124. Zurolo E, Iyer A, Maroso M et al (2011) Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 134:1015–1032

    PubMed  Google Scholar 

  125. Zwerina J, Eger G, Englbrecht M, Manger B, Schett G (2009) Churg–Strauss syndrome in childhood: a systematic literature review and clinical comparison with adult patients. Semin Arthritis Rheum 39:108–115

    PubMed  Google Scholar 

Download references

Funding source

No external funding was secured for this study.

Financial disclosure

The authors have no financial relationships relevant to this article to disclose.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Chirico.

Additional information

Communicated by David Nadal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirico, V., Lacquaniti, A., Salpietro, V. et al. High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr 173, 1123–1136 (2014). https://doi.org/10.1007/s00431-014-2327-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2327-1

Keywords

Navigation