Skip to main content

Advertisement

Log in

Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia- thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    CAS  PubMed  Google Scholar 

  • Alitto HJ, Usrey WM (2003) Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13:440–445

    CAS  PubMed  Google Scholar 

  • Alloway KD (2008) Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 18:979–989

    PubMed  Google Scholar 

  • Alloway KD, Burton H (1985a) Submodality and columnar organization of the second somatic sensory area in cats. Exp Brain Res 61:128–140

    CAS  PubMed  Google Scholar 

  • Alloway KD, Burton H (1985b) Homotypical ipsilateral cortical projections between somatosensory areas I and II in the cat. Neuroscience 14:14–35

    Google Scholar 

  • Alloway KD, Mutic JJ, Hoffer ZS, Hoover JE (2000) Overlapping corticostriatal projections from the rodent vibrissal representations in primary and secondary somatosensory cortex. J Comp Neurol 426:51–67

    CAS  PubMed  Google Scholar 

  • Alloway KD, Lou L, Nwabueze-Ogbo F, Chakrabarti S (2006) Topography of cortical projections to the dorsolateral neostriatum in rats: multiple overlapping sensorimotor pathways. J Comp Neurol 499:33–48

    PubMed  Google Scholar 

  • Alloway KD, Olson ML, Smith JB (2008) Contralateral corticothalamic projections from MI whisker cortex: potential route for modulating hemispheric interactions. J Comp Neurol 510:100–116

    PubMed  PubMed Central  Google Scholar 

  • Alloway KD, Smith JB, Beauchemin KJ, Olson ML (2009) Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: forebrain circuits for modulating whisker behavior. J Comp Neurol 515:548–564

    PubMed  PubMed Central  Google Scholar 

  • Alloway KD, Smith JB, Mowery TM, Watson GDR (2017) Sensory processing in the dorsolateral striatum: the contribution of thalamostriatal pathways. Front Syst Neurosci 11:53

    PubMed  PubMed Central  Google Scholar 

  • Aoki S, Coulon P, Ruigrok TJH (2019a) Multizonal cerebellar influence over sensorimotor areas of the rat cerebral cortex. Cereb Cortex 29:598–614

    PubMed  Google Scholar 

  • Aoki S, Smith JB, Li H, Yan X, Igarashi M, Coulon P, Wickens JR, Ruigrok TJH, Jin X (2019b) An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. Elife 8:e49995. https://doi.org/10.7554/eLife.49995

    Article  PubMed  PubMed Central  Google Scholar 

  • Arce-McShane FI, Ross CF, Takahashi K, Sessle BJ, Hatsopoulos NG (2016) Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies. Proc Nat Acad Sci USA 113:5083–5088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia-Mayer A, Caminiti R (2019) Corticocortical systems underlying high-order motor control. J Neurosci 39:4404–4421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjaalie JG, Brodal P (1989) Visual pathways to the cerebellum: segregation in the pontine nuclei of terminal fields from different visual cortical areas in the cat. Neuroscience 29:95–107

    CAS  PubMed  Google Scholar 

  • Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA (2015) Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsycholigia 79:246–255

    CAS  Google Scholar 

  • Briggs F, Usrey WM (2008) Emerging views of corticothalamic function. Curr Opinion Neurobiol 18:403–407

    CAS  Google Scholar 

  • Brodal P (1978) Principles of organization of the monkey corticopontine projection. Brain Res 148:214–218

    CAS  PubMed  Google Scholar 

  • Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13(2):83–118. https://doi.org/10.1016/0168-0102(92)90092-q

    Article  CAS  PubMed  Google Scholar 

  • Burton H, Mitchell G, Brent S (1982) Second somatic sensory area in the cerebral cortex of cats: somatotopic organization and cytoarchitecture. J Comp Neurol 210:109–135

    CAS  PubMed  Google Scholar 

  • Chakrabarti S, Alloway KD (2006) Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 498:624–636

    PubMed  Google Scholar 

  • Chakrabarti S, Zhang M, Alloway KD (2008) MI neuronal responses to peripheral whisker stimulation: relationship to neuronal activity in SI barrels and septa. J Neurophysiol 100:50–63

    PubMed  PubMed Central  Google Scholar 

  • Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213

    CAS  PubMed  Google Scholar 

  • Charpier S, Pidoux M, Mahon S (2020) Converging sensory and motor cortical inputs onto the same striatal neurons: an in vivo intracellular investigation. PLoS ONE 15(2):e0228260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Augustine GJ, Chadderton P (2016) The cerebellum linearly encodes whisker position during voluntary movement. Elife 5:e10509

    PubMed  PubMed Central  Google Scholar 

  • Colechio EM, Alloway KD (2009) Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex. Brain Struct Funct 213:423–439

    PubMed  Google Scholar 

  • Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41:252–262

    PubMed  Google Scholar 

  • Dudman JT, Gerfen CR (2015) The basal ganglia. In: Paxinos G (ed) The rat nervous system, 4th edn. Academic Press, San Diego, pp 391–440

    Google Scholar 

  • Dykes RW, Rasmusson DD, Hoeltzell PB (1980) Organization of primary somatosensory cortex in cats. J Neurophysiol 43:1527–1546

    CAS  PubMed  Google Scholar 

  • Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424

    CAS  PubMed  Google Scholar 

  • Felleman DJ, Wall JT, Cusick CG, Kaas JH (1983) The representation of the body surface in S-I of cats. J Neurosci 3:1648–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263

    CAS  PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1993) Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 13:1120–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flaherty AW, Graybiel AM (1995) Motor and somatosensory corticostriatal projection magnifications in the squirrel monkey. J Neurophysiol 74:2638–2648

    CAS  PubMed  Google Scholar 

  • Friend DM, Kravitz AV (2014) Working together: basal ganglia pathways in action selection. Trends Neurosci 37:301–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N (2018) A cortico-cerebellar loop for motor planning. Nature 563:113–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Brinkman C, Porter R (1987) A quantitative study of the distribution of neurons projecting to the precentral motor cortex in the monkey (M. fascicularis). J Comp Neurol 259:424–444

    CAS  PubMed  Google Scholar 

  • Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38

    Google Scholar 

  • Hamadjida A, Dea M, Deffeyes J, Quessy S, Dancause N (2016) Parallel cortical networks formed by modular organization of primary motor cortex outputs. Curr Biol 26:1737–1743

    CAS  PubMed  Google Scholar 

  • Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, Yamashita S, Bienkowski MS, Zingg B, Zhu M et al (2016) The mouse cortico-striatal projectome. Nat Neurosci 19:1100–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffer ZS, Alloway KD (2001) Organization of corticostriatal projections from the vibrissal representations in the primary motor and somatosensory cortical areas of rodents. J Comp Neurol 439:87–103

    CAS  PubMed  Google Scholar 

  • Hoffer ZS, Hoover JE, Alloway KD (2003) Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row. J Comp Neurol 466:525–544

    PubMed  Google Scholar 

  • Hoffer ZS, Arantes HB, Roth RL, Alloway KD (2005) Functional circuits mediating sensorimotor integration: quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J Comp Neurol 488:82–100

    PubMed  Google Scholar 

  • Hooks BM, Papale AE, Paletzki RF, Feroze MW, Eastwood BS, Couey JJ, Winnubst J, Chandrashekar J, Gerfen CR (2018) Topographic precision in sensory and motor corticostriatal projections varies across cell type and cortical area. Nat Commun 9:3549

    PubMed  PubMed Central  Google Scholar 

  • Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259:819–821

    CAS  PubMed  Google Scholar 

  • Hoover JE, Hoffer ZS, Alloway KD (2003) Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. J Neurophysiol 89:1576–1587

    PubMed  Google Scholar 

  • Huerta MF, Pons TP (1990) Primary motor cortex receives input from area 3a in macaques. Brain Res 537:367–371

    CAS  PubMed  Google Scholar 

  • Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T (2016) A comprehensive excitatory input map of the striatum reveals novel functional organization. Elife 5:e19103. https://doi.org/10.7554/eLife.19103

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito S-I, Craig AD (2003) Vagal input to lateral area 3a in cat cortex. J Neurophysiol 90:143–154

    PubMed  Google Scholar 

  • Izraeli R, Porter LL (1995) Vibrissal motor cortex in the rat: connections with the barrel field. Exp Brain Res 104:41–54

    CAS  PubMed  Google Scholar 

  • Jackson J, Smith JB, Lee AK (2020) The anatomy and physiology of claustrum-cortex interactions. Ann Rev Neurosci 43:231–247

    CAS  PubMed  Google Scholar 

  • Jones SEG, Coulter JD, Hendry SHC (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–347

    CAS  PubMed  Google Scholar 

  • Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec 281:1148–1156

    Google Scholar 

  • Khateb M, Schiller J, Schiller Y (2017) Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons. Elife 6:e21843

    PubMed  PubMed Central  Google Scholar 

  • Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578–592

    CAS  PubMed  Google Scholar 

  • Klaus A, da Silva JA, Costa RM (2019) What, if, and when to move: basal ganglia circuits and self-paced action initiation. Ann Rev Neurosci 42:459–483

    CAS  PubMed  Google Scholar 

  • Krubitzer L (2009) In search of a unifying theory of complex brain evolution. Ann N Y Acad Sci 1156:44–67

    PubMed  PubMed Central  Google Scholar 

  • Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209

    CAS  PubMed  Google Scholar 

  • Kunzle H (1977) Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res 30:481–492

    CAS  PubMed  Google Scholar 

  • Lee S, Carvell GE, Simons DJ (2008) Motor modulation of afferent somatosensory circuits. Nat Neurosci 11:1430–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16:1662–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CR, Yonk AJ, Wiskerke J, Paradiso KG, Tepper JM, Margolis DJ (2019) Opposing influence of sensory and motor cortical input on striatal circuitry and choice behavior. Curr Biol 29:1313–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leergaard TB, Alloway KD, Mutic JJ, Bjaalie JG (2000a) Three- dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 20:8474–8484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leergaard TB, Lyngstad KA, Thompson JH, Taeymans S, Vos BP, De Schutter E, Bower JM, Bjaalie JG (2000b) Rat somatosensory cerebro- pontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. J Comp Neurol 422:246–266

    CAS  PubMed  Google Scholar 

  • Leergaard TB, Alloway KD, Pham TA, Bolstad I, Hoffer Z, Pettersen C, Bjaalie JG (2004) Three-dimensional topography of corticopontine projections from rat sensorimotor cortex: comparisons with corticostriatal projections reveal diverse integrative organization. J Comp Neurol 478:306–322

    PubMed  Google Scholar 

  • Legg CR, Mercier B, Glickstein M (1989) Corticopontine projection in the rat: the distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 286:427–441

    CAS  PubMed  Google Scholar 

  • LeVay S, Sherk H (1981) The visual claustrum of the cat. I structure and connections. J Neurosci 1:956–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levesque M, Charara A, Gagnon S, Parent A, Deschenes M (1996) Corticostriatal projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res 709:311–315

    CAS  PubMed  Google Scholar 

  • Lu SM, Lin RC (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16

    CAS  PubMed  Google Scholar 

  • Macchi G, Bentivoglio M, Minciacchi D, Molinari M (1981) The organization of the claustroneocortical projections in the cat studied by means of the HRP retrograde axonal transport. J Comp Neurol 195:681–695

    CAS  PubMed  Google Scholar 

  • Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matyas F, Sreenivasan V, Marbach F, Waconge C, Barsy B, Mateo C, Aronoff R, Petersen CH (2010) Motor control by sensory cortex. Science 330:1240–1243

    CAS  PubMed  Google Scholar 

  • Mercier BE, Legg CR, Glickstein M (1990) Basal ganglia and cerebellum receive different somatosensory information in rats. Proc Natl Acad Sci USA 87:4388–4392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    CAS  PubMed  Google Scholar 

  • Mo C, Sherman SM (2019) A sensorimotor pathway via higher-order thalamus. J Neurosci 39:692–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori A (1997) Cortico-cortical connections from somatosensory areas to the motor area of the cortex following peripheral nerve lesion in the cat. NeuroReport 8:3723–3726

    CAS  PubMed  Google Scholar 

  • Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639

    CAS  PubMed  Google Scholar 

  • Murthy VN, Fetz EE (1992) Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89(12):5670–5674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q et al (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pais-Vieira M, Lebedev MA, Wiest MC, Nicolelis MAL (2013) Simultaneous top-down modulation of the primary somatosensory cortex and thalamic nuclei during active tactile discrimination. J Neurosci 33:4076–4093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    CAS  PubMed  Google Scholar 

  • Pearson RC, Brodal P, Gatter KC, Powell TP (1982) The organization of the connections between the cortex and the claustrum in the monkey. Brain Res 234:435–441

    CAS  PubMed  Google Scholar 

  • Proville RD, Spolidoro M, Guyon N, Dugue GP, Selimi F, Isope P, Popa D, Lena C (2014) Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci 17:1233–1239

    CAS  PubMed  Google Scholar 

  • Ragsdale CW, Graybiel AM (1981) The fronto-striatal projection in the cat and monkey and its relationship to inhomogeneities established by actetylcholinesterase histochemistry. Brain Res 208:259–266

    PubMed  Google Scholar 

  • Ramanathan S, Hanley JJ, Deniau JM, Bolam JP (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22:8158–8169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    CAS  PubMed  Google Scholar 

  • Royce GJ (1982) Laminar origin of cortical neurons which project upon the caudate nucleus: a horseradish peroxidase investigation in the cat. J Comp Neurol 205:8–29

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60

    CAS  PubMed  Google Scholar 

  • Schwarz C, Mock M (2001) Spatial arrangement of cerebro-pontine terminals. J Comp Neurol 435:418–432

    CAS  PubMed  Google Scholar 

  • Schwarz C, Thier P (1995) Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields. J Neurosci 15:3475–3489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherk H (1986) The claustrum and the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex: Sensory-motor areas and aspects of cortical connectivity. Plenum, New York

    Google Scholar 

  • Smith JB, Alloway KD (2010) Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 30:16832–16844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JB, Alloway KD (2013) Rat whisker motor cortex is subdivided into sensory-input and motor-output areas. Front Neural Circuits 7:4

    PubMed  PubMed Central  Google Scholar 

  • Smith JB, Alloway KD (2014) Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors. Front Syst Neurosci 8:93

    PubMed  PubMed Central  Google Scholar 

  • Smith JB, Radhakrishnan H, Alloway KD (2012) Rat claustrum coordinates but does not integrate somatosensory and motor cortical information. J Neurosci 32:8583–8588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JB, Klug JR, Ross DL, Howard CD, Hollon NG, Ko VI, Hoffman H, Callaway EM, Gerfen CR, Jin X (2016) Genetic-based dissection unveils the inputs and outputs of striatal patch and matrix compartments. Neuron 91(5):1069–1084. https://doi.org/10.1016/j.neuron.2016.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A et al (2019a) The relationship between the claustrum and endopiriform nucleus: a perspective towards consensus on cross-species homology. J Comp Neurol 527:476–499

    PubMed  Google Scholar 

  • Smith JB, Watson GDR, Liang Z, Liu Y, Zhang N, Alloway KD (2019b) A role for the claustrum in salience processing? Front Neuroanat 13:64. https://doi.org/10.3389/fnana.2019.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Spreafico R, Hayes NL, Rustioni A (1981) Thalamic projections to the primary and secondary somatosensory cortices in cat: Single and double retrograde tracer studies. J Comp Neurol 203:67–90

    CAS  PubMed  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1993) Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J Comp Neurol 330:238–271

    CAS  PubMed  Google Scholar 

  • Stepniewska I, Pirkle S, Roy T, Kaas JH (2020) Functionally matched domains in parietal-frontal cortex of monkeys project to overlapping regions of the striatum. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2020.101864 (in press)

    Article  PubMed  Google Scholar 

  • Suter BA, Shepherd GMG (2015) Reciprocal interareal connections to corticospinal neurons in mouse M1 and S2. J Neurosci 35:2959–2974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki L, Coulon P, Sabel-Goedknegt RTJH (2012) Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 32:10854–10869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umeda T, Isa T, Nishimura Y (2019) The somatosensory cortex receives information about motor output. Sci Adv 5(7):eaaw5388

    PubMed  PubMed Central  Google Scholar 

  • Vogt BA, Pandya DN (1977) Cortico-cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey. J Comp Neurol 177:179–191

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982a) The corticopontine system in the rat. I. Mapping of corticopontine neurons. J Comp Neurol 208:215–226

    CAS  PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982b) The corticopontine system in the rat. II. The Projection Pattern. J Comp Neurol 208:227–238

    CAS  PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M, Ruegg DG (1979) An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus)—II. The projection from frontal and parental association areas. Neuroscience 4:747–765

    CAS  PubMed  Google Scholar 

  • Zagha E, Casale AE, Sachdev RNS, McGinley MJ, McCormick DA (2013) Motor cortex feedback influences sensory processing by modulating network state. Neuron 79:567–578

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Michelle Olson and Dr. Kyle Beauchemin for assistance in mounting tissue, as well as Dr. Ron Wilson and the staff at the Penn State Hershey Department of Comparative Medicine for assistance with surgical procedures. This work was supported by NIH grant NS37532 awarded to KDA.

Funding

This work was supported by NIH grant NS37532 awarded to KDA.

Author information

Authors and Affiliations

Authors

Contributions

Kevin Alloway conceived of the study design. All authors were involved in material preparation. Jared Smith was responsible for data collection, data analysis, making figures and writing the first draft of the manuscript. All authors were involved in editing the manuscript.

Corresponding author

Correspondence to Jared B. Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. J.B.S. is currently a paid employee of REGENXBIO, Inc. a for-profit company that has no claims or interest in this research. S.C. is currently a paid employee of MathWorks, a for-profit company that has no claims or interest in this research.

Ethical approval

Neuronal tracing experiments were performed on adult felines and all procedures complied with NIH guidelines and were approved by the Penn State Institutional Animal Care and Use Committee (IACUC). Procedures were performed under the guidance of veterinary staff in the Department of Comparative Medicine at the Penn State College of Medicine.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.B., Chakrabarti, S., Mowery, T.M. et al. Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 227, 361–379 (2022). https://doi.org/10.1007/s00429-021-02405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02405-6

Keywords

Navigation