Skip to main content

Advertisement

Log in

Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The oval paracentral nucleus (OPC) was initially isolated from the paracentral nucleus (PC) within the intralaminar thalamic nuclei in rats. We have recently shown that the rat OPC receives proprioceptive inputs from jaw-closing muscle spindles (JCMSs). However, it remains unknown which cortical areas receive thalamic inputs from the OPC, and whether the cortical areas receiving the OPC inputs are distinct from those receiving inputs from the other intralaminar nuclei and sensory thalamic nuclei. To address this issue, we injected an anterograde tracer, biotinylated dextranamine (BDA), into the OPC, which was electrophysiologically identified by recording of proprioceptive inputs from the JCMSs. Many BDA-labeled axonal fibers and terminals from the OPC were ipsilaterally observed in the rostral and rostroventral regions of the primary somatosensory cortex (S1), the rostral region of the secondary somatosensory cortex (S2), and the most rostrocaudal levels of the granular insular cortex (GI). In contrast, a BDA injection into the caudal PC, which was located slightly rostral to the OPC, resulted in ipsilateral labeling of axonal fibers and terminals in the rostrolateral region of the medial agranular cortex and the rostromedial region of the lateral agranular cortex. Furthermore, injections of a retrograde tracer, Fluorogold, into these S1, S2, and GI regions, resulted in preferential labeling of neurons in the ipsilateral OPC among the intralaminar and sensory thalamic nuclei. These findings reveal that the rat OPC has widespread, but strong corticopetal projections, indicating that there exist divergent corticopetal pathways from the intralaminar thalamic nucleus, which process JCMS proprioceptive sensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

5C:

Trigeminal sensory nucleus caudalis

5I:

Trigeminal sensory nucleus interpolaris

12:

Hypoglossal nucleus

ABC:

Avidin–biotin-peroxidase complex

ac:

Anterior commissure

Acb:

Accumbens nucleus

AcbC:

Core part of the Acb

AcbS:

Shell part of the Acb

ACg:

Anterior cingulate cortex

Agl:

Lateral agranular cortex

Agm:

Medial agranular cortex

AI:

Agranular insular cortex

BDA:

Biotinylated dextranamine

cc:

Corpus callosum

CeA:

Central amygdaloid nucleus

Cl:

Claustrum

CL:

Centrolateral thalamic nucleus

CM:

Central medial thalamic nucleus

CPu:

Caudate putamen

Cu:

Cuneate nucleus

DAB:

Diaminobenzidine

dGIrvs2:

Dorsal part of GI rostroventrally adjacent to the rostralmost part of S2

DI:

Dysgranular insular cortex

DLO:

Dorsolateral orbital cortex

DP:

Dorsal peduncular cortex

ECu:

External cuneate nucleus

FG:

Fluorogold

fr:

Fasciculus retroflexus

GI:

Granular insular cortex

ic:

Internal capsule

IL:

Infralimbic cortex

IPAC:

Interstitial nucleus of the posterior limb of the anterior commissure

JCMS:

Jaw-closing muscle spindle

LGP:

Lateral globus pallidus

LO:

Lateral orbital cortex

MD:

Mediodorsal thalamic nucleus

Me5:

Trigeminal mesencephalic nucleus

ml:

Medial lemniscus

MO:

Medial orbital cortex

Mo5:

Trigeminal motor nucleus

mt:

Mammillothalamic tract

OPC:

Oval paracentral thalamic nucleus

Or:

Orbital cortex

Pb:

Parabrachial nucleus

PB:

Phosphate buffer

PBS:

Phosphate-buffered saline

PC:

Paracentral thalamic nucleus

PF:

Parafascicular thalamic nucleus

Pom:

Medial part of posterior thalamic complex

PrL:

Prelimbic cortex

RF:

Rhinal fissure

Rt:

Reticular thalamic nucleus

S1:

Primary somatosensory cortex

S2:

Secondary somatosensory cortex

sm:

Stria medullaris of the thalamus

Sm:

Submedial thalamic nucleus

Sol:

Solitary tract nucleus

Su5:

Supratrigeminal nucleus

TSNC:

Trigeminal sensory nuclear complex

Va:

Outer part of layer V

VA:

Ventral anterior thalamic nucleus

Vb:

Inner part of layer V

VL:

Ventrolateral thalamic nucleus

VM:

Ventromedial thalamic nucleus

VO:

Ventral orbital cortex

VPL:

Ventral posterolateral thalamic nucleus

VPLo:

Oral region of the VPL

VPM:

Ventral posteromedial thalamic nucleus

VPMcvm:

Caudo-ventromedial edge of the VPM

VPPC:

Parvicellular part of the ventral posterior thalamic nucleus

References

  • Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, Tsutsumi K, Uchino K, Ssssle BJ, Yoshida A (2014) Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 266:23–37

    Article  CAS  PubMed  Google Scholar 

  • Allen GV, Saper CB, Hurley KM, Cechetto DF (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311:1–16

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Berlin L (1958) Early cortical projection of group I afferents in forelimb muscle nerves of cat. J Physiol 143:61

    Google Scholar 

  • Andersson SA, Landgren S, Wolsk D (1966) The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. J Physiol 183:576–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10

    Article  CAS  PubMed  Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    Article  CAS  PubMed  Google Scholar 

  • Benison AM, Rector DM, Barth DS (2007) Hemispheric mapping of secondary somatosensory cortex in the rat. J Neurophysiol 97:200–207

    Article  PubMed  Google Scholar 

  • Benjamin RM, Akert K (1959) Cortical and thalamic areas involved in taste discrimination in the albino rat. J Comp Neurol 111:231–259

    Article  CAS  PubMed  Google Scholar 

  • Benjamin RM, Pfaffmann C (1955) Cortical localization of taste in albino rat. J Neurophysiol 18:56–64

    Article  CAS  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    Article  CAS  PubMed  Google Scholar 

  • Carvell GE, Simons DJ (1986) Somatotopic organization of the second somatosensory area (SII) in the cerebral cortex of the mouse. Somatosens Res 3:213–237

    Article  CAS  PubMed  Google Scholar 

  • Cechetto DF, Saper CB (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262:27–45

    Article  CAS  PubMed  Google Scholar 

  • Chang Z, Haque T, Iida C, Seki S, Sato F, Kato T, Uchino K, Ono T, Nakamura M, Bae YC, Yoshida A (2009) Distribution of premotoneurons for jaw-closing and jaw-opening motor nucleus receiving contacts from axon terminals of primary somatosensory cortical neurons in rats. Brain Res 1275:43–53

    Article  CAS  PubMed  Google Scholar 

  • Coggeshall RE, Lekan HA (1996) Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J Comp Neurol 364:6–15

    Article  CAS  PubMed  Google Scholar 

  • Donoghue JP, Parham C (1983) Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol 217:390–404

    Article  CAS  PubMed  Google Scholar 

  • Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

    Article  CAS  PubMed  Google Scholar 

  • Dostrovsky JO, Guilbaud G (1988) Noxious stimuli excite neurons in nucleus submedius of the normal and arthritic rat. Brain Res 460:269–280

    Article  CAS  PubMed  Google Scholar 

  • Dostrovsky JO, Broton JG, Warma NK (1987) Functional properties of subnucleus caudalis lamina I neurons projecting to nucleus submedius. In: Schmidt RF, Schaible H-G, Vahle-Hinz C (eds) Fine afferent nerve fibers and pain. Springer, Germany

    Google Scholar 

  • Dubner R, Sessle BJ, Storey AT (1978) The neural basis of oral and facial function. Plenum Press, New York

    Book  Google Scholar 

  • Fang PC, Stepniewska I, Kaas JH (2006) The thalamic connections of motor, premotor, and prefrontal areas of cortex in a prosimian primate (Otolemur garnetti). Neuroscience 143:987–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felleman DJ, Wall JT, Cusick CG, Kaas JH (1983) The representation of the body surface in S-I of cats. J Neurosci 3:1648–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis JT, Xu S, Chapin JK (2008) Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus. J Neurophysiol 99:2291–2304

    Article  PubMed  Google Scholar 

  • Friedman DP, Jones EG (1981) Thalamic input to areas 3a and 2 in monkeys. J Neurophysiol 45:59–85

    Article  CAS  PubMed  Google Scholar 

  • Fujio T, Sato F, Tachibana Y, Kato T, Tomita A, Higashiyama K, Ono T, Maeda Y, Yoshida A (2016) Revisiting the supratrigeminal nucleus in the rat. Neuroscience 324:307–320

    Article  CAS  PubMed  Google Scholar 

  • Furuta T, Deschênes M, Kaneko T (2011) Anisotropic distribution of thalamocortical boutons in barrels. J Neurosci 31:6432–6439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC, Macefield G (1989) Projection of low-threshold afferents from human intercostal muscles to the cerebral cortex. Respir Physiol 77:203–214

    Article  CAS  PubMed  Google Scholar 

  • Gauriau C, Bernard JF (2004) Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J Neurosci 24:752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewegen HJ, Galis-de Graaf Y, Smeets WJ (1999) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16:167–185

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RB, Norgren R (1984) Central projections of gustatory nerves in the rat. J Comp Neurol 222:560–577

    Article  CAS  PubMed  Google Scholar 

  • Hanamori T, Kunitake T, Kato K, Kannan H (1998a) Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats. Brain Res 785:97–106

    Article  CAS  PubMed  Google Scholar 

  • Hanamori T, Kunitake T, Kato K, Kannan H (1998b) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79:2535–2545

    Article  CAS  PubMed  Google Scholar 

  • Haque T, Yamamoto S, Masuda Y, Kato T, Sato F, Uchino K, Oka A, Nakamura M, Takeda R, Ono T, Kogo M, Yoshida A (2010) Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurons in the rat. Brain Res 1346:69–82

    Article  CAS  PubMed  Google Scholar 

  • Haque T, Akhter F, Kato T, Sato F, Takeda R, Higashiyama K, Moritani M, Bae YC, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of secondary somatosensory cortex to trigeminal sensory nuclear complex in rats. Neuroscience 219:214–233

    Article  CAS  PubMed  Google Scholar 

  • Haroian AJ, Massopust LC, Young PA (1981) Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. J Comp Neurol 197:217–236

    Article  CAS  PubMed  Google Scholar 

  • Heath CJ, Hore J, Phillips CG (1976) Inputs from low threshold muscle and cutaneous afferents of hand and forearm to areas 3a and 3b of baboon’s cerebral cortex. J Physiol (Lond) 257:199–227

    Article  CAS  Google Scholar 

  • Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207:532–535

    Article  CAS  PubMed  Google Scholar 

  • Hicks RR, Huerta MF (1991) Differential thalamic connectivity of rostral and caudal parts of cortical area Fr2 in rats. Brain Res 568:325–329

    Article  CAS  PubMed  Google Scholar 

  • Iida C, Oka A, Moritani M, Kato T, Haque T, Sato F, Nakamura M, Uchino K, Seki S, Bae YC, Takada K, Yoshida A (2010) Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. Neuroscience 169:1739–1757

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Terayama R, Jue S-S, Sugiyo S, Dubner R, Ren K (2003) Differential rostral projections of caudal brainstem neurons receiving trigeminal input after masseter inflammation. J Comp Neurol 465:220–233

    Article  PubMed  Google Scholar 

  • Ikenoue E, Akhter F, Tsutsumi Y, Sato F, Ohara H, Uchino K, Furuta T, Tachibana Y, Yoshida A (2018) Transcortical descending pathways through granular insular cortex conveying orofacial proprioception. Brain Res 1687:11–19

    Article  CAS  PubMed  Google Scholar 

  • Ito S (1992) Multiple projection of vagal non-myelinated afferents to the anterior insular cortex in rats. Neurosci Lett 148:151–154

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Kuramoto E, Yamanaka A, Sonomura T, Uemura M, Goto T (2015) Ascending parabrachio-thalamo-striatal pathways: potential circuits for integration of gustatory and oral motor functions. Neuroscience 294:1–13

    Article  CAS  PubMed  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983) Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:315–326

    Google Scholar 

  • Iwata K, Itoga H, Ikukawa A, Hanashima N, Sumino R (1985) Distribution and response characteristics of masseteric nerve-driven neurons in two separate cortical projection areas of cats. Brain Res 342:179–182

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) The Thalamus. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones EG, Friedman DP (1982) Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48:521–544

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Friedman DP, Hendry SH (1982) Thalamic basis of place- and modality-specific columns in monkey somatosensory cortex: a correlative anatomical and physiological study. J Neurophysiol 48:545–568

    Article  CAS  PubMed  Google Scholar 

  • Kosar E, Grill HJ, Norgren R (1986) Gustatory cortex in the rat II Thalamocortical projections. Brain Res 379:342–352

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977a) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977b) Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J Comp Neurol 172:723–752

    Article  CAS  PubMed  Google Scholar 

  • Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R (2004) Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 468:361–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanciego LJ, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. Chem Neuroanat 42:157–383

    Article  Google Scholar 

  • Landgren S, Silfvenius H (1969) Projection to cerebral cortex of group I muscle afferents from the cat’s hind limb. J Physiol 200:353–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433:312–334

    Article  CAS  PubMed  Google Scholar 

  • Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12:321–343

    Article  CAS  PubMed  Google Scholar 

  • Lund JP, Sessle BJ (1974) Oral-facial and jaw muscle afferent projections to neurons in cat frontal cortex. Exp Neurol 45:314–331

    Article  CAS  PubMed  Google Scholar 

  • Lund JP, Richmond FJ, Touloumis C, Patry Y, Lamarre Y (1978) The distribution of Golgi tendon organs and muscle spindles in masseter and temporalis muscles of the cat. Neuroscience 3:259–270

    Article  CAS  PubMed  Google Scholar 

  • Macefield G, Burke D, Gandevia SC (1989) The cortical distribution of muscle and cutaneous afferent projections from the human foot. Electroencephalogr Clin Neurophysiol 72:518–528

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Kobashi M, Mitoh Y, Fujita M, Minagi S, Matsuo R (2014) Differential involvement of two cortical masticatory areas in submandibular salivary secretion in rats. Brain Res 1543:200–208

    Article  CAS  PubMed  Google Scholar 

  • Maendly R, Rüegg DG, Wiesendanger M, Wiesendanger R, Lagowska J, Hess B (1981) Thalamic relay for group I muscle afferents of forelimb nerves in the monkey. J Neurophysiol 46:901–917

    Article  CAS  PubMed  Google Scholar 

  • Markowitsch HJ, Pritzel M (1981) Prefrontal cortex of the guinea pig (Cavia porcellus) defined as cortical projection area of the thalamic mediodorsal nucleus. Brain Behav Evol 18:80–95

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol 212:38–52

    Article  CAS  PubMed  Google Scholar 

  • Moga MM, Saper CB (1994) Neuropeptide-immunoreactive neurons projecting to the paraventricular hypothalamic nucleus in the rat. J Comp Neurol 346:137–150

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Uemura M, Yasui K, Ozaki HS, Tabata S, Taen A (2000) An anterograde and retrograde tract-tracing study on the projections from the thalamic gustatory area in the rat: distribution of neurons projecting to the insular cortex and amygdaloid complex. Neurosci Res 36:297–309

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Wang XD (2002) Neurons in the cortical taste area receive nociceptive inputs from the whole body as well as the oral cavity in the rat. Neurosci Lett 322:87–90

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Kuramoto E, Furuta T, Hioki H, Tanaka YR, Fujiyama F, Sonomura T, Uemura M, Sugiyama K, Kaneko T (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22:2840–2857

    Article  PubMed  Google Scholar 

  • Oscarsson O, Rosén I (1963) Projection to cerebral cortex of large muscle-spindle afferents in forelimb nerves of the cat. J Physiol 169:924–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson O, Rosén I (1966) Short-latency projections to the cat’s cerebral cortex from skin and muscle afferents in the contralateral forelimb. J Physiol 182:164–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, Sydney

    Google Scholar 

  • Phillips CG, Powell TP, Wiesendanger M (1971) Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol 217:419–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell TP, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162

    CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Akhter F, Haque T, Kato T, Takeda R, Nagase Y, Sessle BJ, Yoshida A (2013) Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 233:9–27

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Uemura Y, Kanno C, Tsutsumi Y, Tomita A, Oka A, Kato T, Uchino K, Murakami J, Haque T, Tachibana Y, Yoshida A (2017) Thalamo-insular pathway conveying orofacial muscle proprioception in the rat. Neuroscience 365:158–178

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Kado S, Tsutsumi Y, Tachibana Y, Ikenoue E, Furuta T, Uchino K, Bae YC, Uzawa N, Yoshida A (2020) Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Res 1739:146830

    Article  CAS  PubMed  Google Scholar 

  • Satoh Y, Ishizuka K, Murakami T (2007) Changes in cortically induced rhythmic jaw movements after lesioning of the red nucleus in rats. Brain Res 1165:60–70

    Article  CAS  PubMed  Google Scholar 

  • Sirisko MA, Sessle BJ (1983) Corticobulbar projections and orofacial and muscle afferent inputs of neurons in primate sensorimotor cerebral cortex. Exp Neurol 82:716–720

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (2007) Thalamic connections of the dorsal and ventral premotor areas in New World owl monkeys. Neuroscience 147:727–745

    Article  CAS  PubMed  Google Scholar 

  • Tomita A, Kato T, Sato F, Haque T, Oka A, Yamamoto M, Ono T, Bae YC, Maeda Y, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of primary somatosensory cortex to pons and medulla, especially to trigeminal sensory nuclear complex, in rats. Neuroscience 200:166–185

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi Y, Tachibana Y, Sato F, Furuta T, Ohara H, Tomita A, Fujita M, Moritani M, Yoshida A (2018) Cortical and subcortical projections from granular insular cortex receiving orofacial proprioception. Neuroscience 388:317–329

    Article  CAS  PubMed  Google Scholar 

  • Uemura Y, Haque T, Sato F, Tsutsumi Y, Ohara H, Oka A, Furuta T, Bae YC, Yamashiro T, Tachibana Y, Yoshida A (2020) Proprioceptive thalamus receiving forelimb and neck muscle spindle inputs via the external cuneate nucleus in the rat. Brain Struct Funct 225:2177–2192

    Article  PubMed  Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • Van Eden CG, Lamme VA, Uylings HB (1992) Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde and anterograde tracer study. Eur J Neurosci 4:77–97

    Article  PubMed  Google Scholar 

  • Waite PME (2004) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 817–851

    Chapter  Google Scholar 

  • Waite PME, Tracey DJ (1985) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, San Diego, pp 705–724

    Google Scholar 

  • Welker C, Sinha MM (1972) Somatotopic organization of Sm II cerebral neocortex in albino rat. Brain Res 37:132–136

    Article  Google Scholar 

  • Wouterlood FG (2015) A survey of current Neuroanatomical tracing techniques. In: Arenkiel BR (ed) Neural tracing methods. Humana Press, New York, Tracing neurons and their connections, pp 1–49

    Google Scholar 

  • Yamamoto T, Yuyama N, Kawamura Y (1981) Cortical neurons responding to tactile, thermal and taste stimulations of the rat’s tongue. Brain Res 221:202–206

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1988) Sensory inputs from the oral region to the cerebral cortex in behaving rats: an analysis of unit responses in cortical somatosensory and taste areas during ingestive behavior. J Neurophysiol 60:1303–1321

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1989) Sensory and motor responses of trigeminal and reticular neurons during ingestive behavior in rats. Exp Brain Res 76:386–400

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Sessle BJ, Chiang CY (1991) Trigeminal projections to the nucleus submedius of the thalamus in the rat. J Comp Neurol 307:609–625

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Chiang CY (1992) The afferent and efferent connections of the nucleus submedius in the rat. J Comp Neurol 324:115–133

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Fukami H, Nagase Y, Appenteng K, Honma S, Zhang LF, Bae YC, Shigenaga Y (2001) Quantitative analysis of synaptic contacts made between functionally identified oralis neurons and trigeminal motoneurons in cats. J Neurosci 21:6298–6307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida A, Yamamoto M, Moritani M, Fukami H, Bae YC, Chang Z, Sugiyo S, Takemura M, Park KP, Shigenaga Y (2005) Bilateral projection of functionally characterized trigeminal oralis neurons to trigeminal motoneurons in cats. Brain Res 1036:208–212

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y (2009) Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract-tracing. J Comp Neurol 514:368–386

    Article  PubMed  Google Scholar 

  • Yoshida A, Fujio T, Sato F, Ali MS, Haque T, Ohara H, Moritani M, Kato T, Dostrovsky JO, Tachibana Y (2017) Orofacial proprioceptive thalamus of the rat. Brain Struct Funct 222:2655–2669

    Article  PubMed  Google Scholar 

  • Zhang ZW, Deschênes M (1998) Projections to layer VI of the posteromedial barrel field in the rat: a reappraisal of the role of corticothalamic pathways. Cereb Cortex 8:428–436

    Article  CAS  PubMed  Google Scholar 

  • Zhang GX, Sasamoto K (1990) Projections of two separate cortical areas for rhythmical jaw movements in the rat. Brain Res Bull 24:221–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Katsuro Uchino, Dr. Haruka Ohara, and Dr. Yume Uemura for their technical help. This work was supported by Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (18K19641, 18KK0259 to A.Y. and 17K11608, 20K09888 to F.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. AY and YTa conceptualized the hypothesis, designed and supervised the experiments and directed the data analysis. YTs, YM, TH, and FS carried out the experiments and data analysis. TF and AO helped perform experiments and data analysis. AY, YTs, TF, MM, YCB, TY, and YTa finalized the figures and text.

Corresponding authors

Correspondence to Yoshihisa Tachibana or Atsushi Yoshida.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi, Y., Mizuno, Y., Haque, T. et al. Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Struct Funct 226, 1115–1133 (2021). https://doi.org/10.1007/s00429-021-02228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02228-5

Keywords

Navigation