Skip to main content

Advertisement

Log in

The interlaminar glia: from serendipity to hypothesis

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

An account of work performed at the UNA laboratories since 1992 on the detection and description of interlaminar glial processes, is presented. The incidental observation (serendipity) of longer than expected glial processes in the superficial layers of the cerebral cortex in hemiparkinsonian Cebus apella monkeys, was expanded afterwards to cover the largest possible sampling of representatives of mammalian orders and species, as well as in experimental and pathological conditions, in human and non-human primates. The term interlaminar was coined to differentiate these processes from the classical astroglial stellate, intralaminar ones. Such account grew to the point of inspiring, on speculative grounds, possible roles in the organization of the cerebral cortex. Interlaminar glial processes represent an essentially primate characteristic, affected by neuropathological conditions such as DS and AD and experimental procedures affecting normal sensory input, suggesting thalamic involvement in their normal expression. Their ontogenetic development, phylogenetic evolution and aging changes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Colombo (1996)

Fig. 4

Modified from Colombo (2001) and Colombo et al. (2004)

Fig. 5

Modified from Colombo et al. (2000)

Fig. 6

From Colombo et al. (2000)

Fig. 7

From Colombo and Reisin (2004)

Fig. 8

Modified from Colombo et al. (1997b)

Fig. 9

Modified from Colombo et al. (1999a)

Fig. 10

Modified from Colombo et al. (1997a)

Fig. 11

Modified from Colombo et al. (1997a)

Fig. 12

Modified from Colombo et al. (2005)

Fig. 13

Modified from Reisin and Colombo (2004)

Fig. 14

Modified from Colombo et al. (1999b)

Fig. 15

From Colombo et al. (2005)

Fig. 16

From Colombo et al. (2005)

Fig. 17

From Colombo et al. (2002)

Fig. 18

Modified from Colombo et al. (2002)

Fig. 19

From Colombo et al. (1997a)

Fig. 20

From Colombo et al. (2006)

Fig. 21

Modified from Colombo et al. (2006)

Fig. 22

From Colombo et al. (2001)

Fig. 23

From Reisin and Colombo (2002a, b)

Similar content being viewed by others

Abbreviations

IR:

Immunoreactivity/immunoreactive

IGP:

Interlaminar glial processes

DS:

Down’s syndrome

AD:

Alzheimer’s disease

AE:

Albert Einstein

References

  • Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548

    Article  CAS  PubMed  Google Scholar 

  • Anderson B (1999) Commentary. A proof of the need for the spatial clustering of interneuronal connections to enhance cortical computation. Cereb Cortex 9:2–3

    Article  CAS  PubMed  Google Scholar 

  • Andriezen WL (1893) The neuroglia elements of the brain. Brit Med J 29:227–230

    Article  Google Scholar 

  • Araque A, Parpura V, Sanzqiri RP, Haydon PG (1999) Tripartite synapses: glia the unacknowledged partner. TINS 22:208–215

    CAS  PubMed  Google Scholar 

  • Barres BA, Koroshetz WJ, Chun LLY, Corey DP (1990) Ion channel expression by white matter glia: the type 1 astrocyte. Neuron 5:527–544

    Article  CAS  PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Ann Rev Neurosci 21:149–186

    Article  CAS  PubMed  Google Scholar 

  • Cajal SR (1904) In: Textura del sistema nervioso del hombre y de los vertebrados vol 2, Pt. 2, chpt. 37, pp 792–864. Madrid:Moya, Spain

  • Casseb GI, Varner JE (1987) Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. J Cell Biol 105:2581–2588

    Article  Google Scholar 

  • Colombo JA (1994) Regional non-homogeneities in cortical astroglia in adult monkeys. Persistence of transitional forms. Proceedings of Society for Neuroscience 24th annual meeting 20 (2): 578.13, Miami, FL, USA

  • Colombo JA (1995) Interlaminar astroglial processes in the cerebral cortex of adult primates:further characterization. In: Proceed Ist Int Conference on Glial Contributions to Behaviour, pp 117–118, Belfast

  • Colombo JA (1996) Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats. Acta Anat (Basel) 155:57–62

    Article  CAS  Google Scholar 

  • Colombo JA (2000) Comentarios a propósito del cerebro de Albert Einstein. Medicina 60:530–532

    CAS  PubMed  Google Scholar 

  • Colombo JA (2001) A columnar-supporting mode of astroglial architecture in the cerebral cortex of adult primates. Neurobiology 9:1–16

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Puissant V (1994) Regional nonhomogeneities in cortical astroglia in adult monkeys. Persistence of transitiona forms. In: Annual Meeting-Society for Neuroscience abstract no 578.13, Miami, Fla

  • Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Yáñez A, Puissant V, Lipina S (1995) Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res 40:551–556

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Yáñez A, Lipina S (1997a) Interlaminar astroglial processes in the cerebral cortex of non human primates: response to injury. J Brain Res 38:503–512

    CAS  Google Scholar 

  • Colombo JA, Lipina S, Yáñez A, Puissant V (1997b) Postnatal development of interlaminar astroglial processes in the cerebral cortex of primates. Int J Dev Neurosci 15:823–833

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Gayol S, Yáñez A, Marco P (1997c) Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48:352–357

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Härtig W, Lipina S, Bons N (1998) Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys. Anat Embryol 197:369–376

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Schleicher A, Zilles K (1999a) Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of New World Monkeys. Glia 25:85–92

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Yáñez A, Lipina S (1999b) Disruption of patterns of immunoreactive glial fibrillary acidic protein processes in the Cebus apella striate cortex following loss of visual input. J Brain Res 4:449–453

    Google Scholar 

  • Colombo JA, Fuchs E, Härtig W, Marotte LR, Puissant V (2000) “Rodent-like” and “primate-like” types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study. Anat Embryol 201:111–120

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Napp MI, Yáñez A, Reisin H (2001) Tissue printing of astroglial interlaminar processes from human and non-human primate cerebral cortex. Brain Res Bull 55:561–565

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242

    Article  CAS  PubMed  Google Scholar 

  • Colombo JA, Sherwood C, Hof P (2004) Interlaminar astroglial processes in the cerebral cortex of great apes. Anat Embryol 429:391–394

    Google Scholar 

  • Colombo JA, Reisin HD, Jones M, Bentham C (2005) Development of interlaminar astroglial processes in the cerebral cortex of control and Down’s syndrome human cases. Exp Neurol 193:207–217

    Article  PubMed  Google Scholar 

  • Colombo JA, Reisin HD, Miguel-Hidalgo JJ, Rajkowska G (2006) Cerebral cortex astroglia and the brain of a genius: a propos of A. Einstein’s. Brain Res Rev 52:257–263

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM II, Janigro D (1998) Functional hippocampal astrocytes. J Neurosci 18:4425–4438

    PubMed  PubMed Central  Google Scholar 

  • DeFelipe J, Markram H, Rockland KS (2012) The neocortical column. Front Neuroanat 6:1–2

    Article  Google Scholar 

  • Dierig S (1994) Extending the neuron doctrine: carl Ludwig Schleich (1859–1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. TINS 17:449–452

    CAS  PubMed  Google Scholar 

  • Eilam R, Aharoni R, Arnon R, Malach R (2016) Astrocyte morphology is confined by cortical functional boundaries in mammals ranging from rats to humans. doi:10.7554/eLife.15915

    Article  Google Scholar 

  • Gaspar P, Colombo JA, Puissant V, Berger B (1992) Long term alterations of the aminergic innervations in MPTP-induced hemiparkinsonism in Cebus monkeys. Meet Europ Neurosci Ass, Amsterdam, The Netherlands

  • Gaspar P, Febret A, Colombo JA (1993) Serotoninergic sprouting in primate MPTP-induced hemiparkinsonism. Exp Brain Res 96:100–106

    Article  CAS  PubMed  Google Scholar 

  • Gayol S, Pannicke T, Reichenbach A, Colombo JA (1999) Cell–cell coupling in cultures of striatal and cortical astrocyte of the monkey Cebus apella. J Brain Res 4:473–479

    Google Scholar 

  • Giaume C, Liu X (2012) From a glial syncytium to a more restricted and specific glial networking. J Phys Paris 106:34–39

    Article  Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev 11:87–99

    Article  CAS  Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu O, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859

    PubMed  Google Scholar 

  • Hortega Del Rio (1942) La neuroglia normal. Conceptos de angiogliona y neurogliona. Arch Histol Normal Patol 1:5–71

    Google Scholar 

  • Jones EG (2000) Commentary. Microcolumns in the cerebral cortex. PNAS 97:5019–5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. TINS 24:595–601

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Ransom B (2005) The concept of neuroglia: a historical perspective. In: Kettenman H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 1–16

    Google Scholar 

  • Kufler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on glial membrane potential. Proc R Soc B 168:1–28

    Article  Google Scholar 

  • Lanosa X, Reisin HD, Santacroce I, Colombo JA (2008) Astroglial dye-coupling: and in vitro analysis of regional interspecies differences in rodents and primates. Brain Res 1240:82–86

    Article  CAS  PubMed  Google Scholar 

  • Lewis TJ, Rinzel J (2000) Self-organized synchronous oscillations in a network of excitable coupled gap junctions. Netw Comput Neural Syst 11:299–320

    Article  CAS  Google Scholar 

  • Martinotti C (1889) Contributo allo studio della corteccia cerebrale, ed all’origine centrale dei nervi. Ann Fren Sci Affin 1:314–332

    Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1974) Neural mechanisms in somesthesia. In: Mountcastle VB (ed) Medical physiology. The CV Mosby Co, St. Louis, pp 307–347

    Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • Mugnaini E (1986) Cell junctions of astrocytes, ependyma, and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 1. Academic Press Inc, NY, pp 329–371

    Chapter  Google Scholar 

  • Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium by levels by retinal glial cell K+ siphoning. Science 225:1174–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann GJ, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) A tripartite synapses: astrocyte process and control synaptic information. Trends Neurosci 32:421–431

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenman H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford

    Google Scholar 

  • Reisin HD, Colombo JA (2002a) Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cell Mol Neurobiol 22:633–644

    Article  CAS  PubMed  Google Scholar 

  • Reisin HD, Colombo JA (2002b) Astroglial interlaminar processes in human cerebral cortex: variations in cytoskeletal profiles. Brain Res 937:51–57

    Article  CAS  PubMed  Google Scholar 

  • Reisin H, Colombo JA (2004) Glial changes in primate cerebral cortex following long-term sensory deprivation. Brain Res 1000:179–182

    Article  CAS  PubMed  Google Scholar 

  • Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865

    Article  CAS  PubMed  Google Scholar 

  • Retzius G (1894) Die Neuroglia des Gehirns beim Menschen und bei Säugethieren. Biol Untersuchungen, Neue Folge 6: 1–28. Verlag, Jena

  • Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:1–6

    Article  CAS  PubMed  Google Scholar 

  • Robertson JM (2014) Astrocytes and the evolution of the human brain. Med Hypoth 82:236–239

    Article  CAS  Google Scholar 

  • Rouach N, Koulakoff A, Giaume C (2004) Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 45:265–272

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Schenker NM, Buxhoeveden DP, Blackmon WL, Amunts K, Zilles K, Semendeferi K (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comput Neurol 510:117–128

    Article  Google Scholar 

  • Schipke CG, Kettenman H (2004) Astrocyte responses to neuronal activity. Glia 47:226–232

    Article  PubMed  Google Scholar 

  • Schlaug G, Schleicher A, Zilles KJ (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. Comput Neurol 351:441–452

    Article  CAS  Google Scholar 

  • Shiramatsu IT, Takahashi K, Noda T, Kanzaki R, Nakahara H, Takahashi A (2016) Microelectrode mapping of tonotopic, laminar and field’s specific organization of thalamo-cortical pathway in the rat. Neuroscience 332:38–52

    Article  CAS  PubMed  Google Scholar 

  • Simonton DK (1999) “The origins of genius” (Darwinian perspectives on creativity). Oxford University Press, New York

    Google Scholar 

  • Singer W (1995) Development and poasticity of cortical processing architectures. Science 270:758–763

    Article  CAS  PubMed  Google Scholar 

  • Varon S, Somjen GG (1979) In: “Neuron-glia interactions” Neurosci Res Program Bull. 17:1–239. Boston-Mass

  • Verkhratsky A, Butt AM (2013) In: Verkhratsky A, Butt AM (eds) Glial physiology and pathophysiology. Wiley, NJ

    Chapter  Google Scholar 

  • Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc B 371:20150428

    Article  Google Scholar 

  • Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Progr Neurobiol 49:185–214

    Article  CAS  Google Scholar 

  • von Bonin G, Mehler WR (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27:1–9

    Article  Google Scholar 

Download references

Acknowledgements

To my wife Beatriz for life-long encouragement and support; to all associates and laboratory assistants whose names are included in the corresponding publications, to Carlos Nagle MD and technicians working in the indoor primate facility of CIRHE (CEMIC-CONICET), to all donors of brain material (institutional Brain Tissue Banks and individual colleagues) from so many animal sources. Special thanks to Prof. Drs. Karl Zilles (Research Centre Jülich, Germany), Axel Schleicher (Dusseldorf, Germany), Andreas Reichenbach (Leipzig, Germany), Arthur Butt (Portland, G. Britain), Jean De Vellis (Los Angeles, USA), Javier DeFelipe (Instituto Cajal, Madrid, Spain), Eva Sykova (Prague, Czech Republic), Frank Kirchhoff (Homburg, Germany) and Marina Bentivoglio (Verona, Italy) for their support and productive criticism to our various published reports. My recognition for their most critical past financial support to the Alexander Humboldt Foundation (Germany), DAAD (Germany), supporters of Fundación Conectar, CONICET, CEMIC, Fundación N. Quirno, Lejeune Foundation (France), European Community, Fundación Bunge y Born and British Royal Society. I also wish to thank the Directors and personnel of the primate facility at CAPRIM (Corrientes, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Colombo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, J.A. The interlaminar glia: from serendipity to hypothesis. Brain Struct Funct 222, 1109–1129 (2017). https://doi.org/10.1007/s00429-016-1332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1332-8

Keywords

Navigation