Skip to main content

Glial Cells: Neuroglia

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century

Abstract

In the human brain glial cells are as abundant as neurons. The relative number of glial cells has increased with increasing complexity of the central nervous system (CNS) during evolution. In vertebrates three types of glial cells can be distinguished in the CNS, namely, astrocytes, oligodendrocytes, and microglia. In the peripheral nervous system glial cells are represented by Schwann cells, satellite glial cells, enteric glial cells (EGCs), and olfactory ensheathing cells. Astroglia are a heterogeneous cell population that fulfill different supportive and homeostatic tasks such as providing guiding structures during development, controlling homeostasis of the extracellular space, providing energy substrate for neurons, controlling blood flow, and modulating synaptic transmission. Oligodendrocytes in the central and Schwann cells in the peripheral nervous system form myelin and thereby enable a high conduction velocity within the axons. Microglial cells are the immune competent cells of the brain and are activated during any pathologic process. The activated microglial cells can release many factors which influence the pathologic process. Taken together brain function is only possible by a concerted action of neurons and glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alzheimer A (1910) Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe. In: Nissl F, Alzheimer A (eds) Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten. Gustav Fischer, Jena, pp 401–562

    Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    Article  CAS  Google Scholar 

  • Bunge MB (1968) Glial cells and the central myelin sheath. Physiol Rev 48:197–210

    Article  CAS  Google Scholar 

  • Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782

    Article  CAS  Google Scholar 

  • Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231

    Article  CAS  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  CAS  Google Scholar 

  • Golgi C (1883) Generalità sul sistema nervoso ed istologia del tessuto nervoso. Vallardi, Milano

    Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  Google Scholar 

  • Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  Google Scholar 

  • Kettenmann H, Ransom BR (2005) The concept of neuroglia: a historical perspective. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 1–16

    Google Scholar 

  • Kettenmann H, Ransom BR (2013) Neuroglia. Oxford University Press, New York

    Book  Google Scholar 

  • Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    Article  CAS  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553

    Article  Google Scholar 

  • Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10

    Article  CAS  Google Scholar 

  • Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    Article  CAS  Google Scholar 

  • Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    Article  CAS  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  CAS  Google Scholar 

  • Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York

    Google Scholar 

  • Remahl S, Hildebrand C (1990) Relation between axons and oligodendroglial cells during initial myelination. J Neurocytol 19:313–328

    Article  CAS  Google Scholar 

  • Shepherd GM (1988) Neurobiology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690

    Article  CAS  Google Scholar 

  • Simons M, Trajkovic K (2006) Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119:4381–4389

    Article  CAS  Google Scholar 

  • Stallcup WB (1981) The NG2 antigen, a putative lineage marker: immunofluorescent localization in primary cultures of rat brain. Dev Biol 83:154–165

    Article  CAS  Google Scholar 

  • Verkhratsky A (2009) Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxford) 195:111–122

    Article  CAS  Google Scholar 

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Verkhratsky A, Kirchhoff F (2007) Glutamate-mediated neuronal-glial transmission. J Anat 210(6):651–660

    Article  CAS  Google Scholar 

  • Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond Ser B Biol Sci 371:20150428

    Article  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389

    Article  CAS  Google Scholar 

  • Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    Article  CAS  Google Scholar 

  • Verkhratsky A, Parpura V, Rodriguez JJ (2010) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res Rev 66(1–2):133–151

    PubMed  Google Scholar 

  • Verkhratsky A, Parpura V, Zorec R (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathology 27:629–644

    Google Scholar 

  • Virchow R (1858) Die Cellularpathologie. August Hirschwald, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Kettenmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kettenmann, H., Verkhratsky, A. (2021). Glial Cells: Neuroglia. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_19-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_19-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6434-1

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics