Skip to main content

Advertisement

Log in

An update on the development of concepts, diagnostic criteria, and challenging issues for neuroendocrine neoplasms across different digestive organs

  • Review and Perspectives
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Digestive neuroendocrine neoplasms (NENs) are a group of heterogeneous neoplasms found throughout the digestive tract, with different behaviour and genetic background. In the last few years, nomenclature and WHO/UICC classifications of digestive NENs have changed, and molecular classifications have emerged, especially in pancreatic locations. Increasing patho-molecular details are needed to diagnose the different categories of NEN, including the use of helpful immunohistochemical markers. In this review, we address these topics in three successive chapters. We first briefly review recent updates in classifications, discuss important grading and proliferating issues and advances in the molecular understanding of NEN. Then, we provide an update on diagnosis, including the most important differential diagnoses of NEN, with a focus on high-grade neoplasms and mixed tumours. Finally, we highlight a variety of currently used and next-generation predictive and prognostic biomarkers as well as biomarkers of tumour origin and describe some site specificities of gastrointestinal NEN. We specifically focus on biomarkers available to pathologists with the potential to change the way patients with NEN are diagnosed and treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lokuhetty D, White V, Watanabe R, Cree I (2019) WHO classification of tumours – digestive system tumours, 5th edn. IARC Press, Lyon

    Google Scholar 

  2. Lloyd RV, Osamura RY, Klöppel G, Rosai J (2017) WHO classification of tumours of endocrine organs, 4th edn. IARC Press, Lyon

    Google Scholar 

  3. Botling J, Lamarca A, Bajic D et al (2020) High-grade progression confers poor survival in pancreatic neuroendocrine tumors. Neuroendocrinology 110:891–898. https://doi.org/10.1159/000504392

    Article  CAS  PubMed  Google Scholar 

  4. Panzuto F, Cicchese N, Partelli S et al (2017) Impact of Ki67 re-assessment at time of disease progression in patients with pancreatic neuroendocrine neoplasms. PLoS ONE 12:e0179445. https://doi.org/10.1371/journal.pone.0179445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang X-F, Xue F, Wu Z et al (2020) Development and validation of a modified eighth AJCC staging system for primary pancreatic neuroendocrine tumors. Ann Surg. https://doi.org/10.1097/SLA.0000000000004039

    Article  PubMed  Google Scholar 

  6. Amin MB, Greene FL, Edge SB et al (2017) The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 67:93–99. https://doi.org/10.3322/caac.21388

    Article  PubMed  Google Scholar 

  7. Brierley J, Gospodarowicz M, Wittekind C (2017) TNM classification of malignant tumours, 8th edn. Wiley Blackwell, Oxford

    Google Scholar 

  8. Dhall D, Mertens R, Bresee C et al (2012) Ki-67 proliferative index predicts progression-free survival of patients with well-differentiated ileal neuroendocrine tumors. Hum Pathol 43:489–495. https://doi.org/10.1016/j.humpath.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Grillo F, Albertelli M, Brisigotti MP et al (2015) Grade increases in gastro-entero-pancreatic neuroendocrine tumor metastases compared to the primary tumor. Neuroendocrinology. https://doi.org/10.1159/000439434

    Article  PubMed  Google Scholar 

  10. Khan MS, Luong TV, Watkins J et al (2013) A comparison of Ki-67 and mitotic count as prognostic markers for metastatic pancreatic and midgut neuroendocrine neoplasms. Br J Cancer 108:1838–1845. https://doi.org/10.1038/bjc.2013.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perren A, Couvelard A, Scoazec J-Y et al (2017) ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pathology: diagnosis and prognostic stratification. Neuroendocrinology 105:196–200. https://doi.org/10.1159/000457956

    Article  CAS  PubMed  Google Scholar 

  12. Owens R, Gilmore E, Bingham V et al (2020) Comparison of different anti-Ki67 antibody clones and hot-spot sizes for assessing proliferative index and grading in pancreatic neuroendocrine tumours using manual and image analysis. Histopathology 77:646–658. https://doi.org/10.1111/his.14200

    Article  PubMed  Google Scholar 

  13. Tellez-Gabriel M, Ory B, Lamoureux F et al (2016) Tumour heterogeneity: the key advantages of single-cell analysis. Int J Mol Sci 17:E2142. https://doi.org/10.3390/ijms17122142

    Article  CAS  PubMed  Google Scholar 

  14. Shi C, Gonzalez RS, Zhao Z et al (2015) Liver metastases of small intestine neuroendocrine tumors: Ki-67 heterogeneity and World Health Organization grade discordance with primary tumors. Am J Clin Pathol 143:398–404. https://doi.org/10.1309/AJCPQ55SKOCYFZHN

    Article  PubMed  Google Scholar 

  15. Yang Z, Tang LH, Klimstra DS (2011) Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 35:853–860. https://doi.org/10.1097/PAS.0b013e31821a0696

    Article  PubMed  Google Scholar 

  16. Kankava K, Maisonneuve P, Mangogna A et al (2021) Prognostic features of gastro-entero-pancreatic neuroendocrine neoplasms in primary and metastatic sites: grade, mesenteric tumour deposits and emerging novelties. J Neuroendocrinol 33(8):e13000. https://doi.org/10.1111/jne.13000

  17. de Mestier L, Armani M, Cros J et al (2019) Lesion-by-lesion correlation between uptake at FDG PET and the Ki67 proliferation index in resected pancreatic neuroendocrine tumors. Dig Liver Dis 51:1720–1724. https://doi.org/10.1016/j.dld.2019.06.022

    Article  CAS  PubMed  Google Scholar 

  18. Vyas M, Tang LH, Rekhtman N, Klimstra DS (2021) Alterations in Ki67 labeling following treatment of poorly differentiated neuroendocrine carcinomas: a potential diagnostic pitfall. Am J Surg Pathol 45:25–34. https://doi.org/10.1097/PAS.0000000000001602

    Article  PubMed  PubMed Central  Google Scholar 

  19. Govind D, Jen K-Y, Matsukuma K et al (2020) Improving the accuracy of gastrointestinal neuroendocrine tumor grading with deep learning. Sci Rep 10:11064. https://doi.org/10.1038/s41598-020-67880-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Satturwar SP, Pantanowitz JL, Manko CD et al (2020) Ki-67 proliferation index in neuroendocrine tumors: can augmented reality microscopy with image analysis improve scoring? Cancer Cytopathol 128:535–544. https://doi.org/10.1002/cncy.22272

    Article  CAS  PubMed  Google Scholar 

  21. Di Domenico A, Wiedmer T, Marinoni I, Perren A (2017) Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 24:R315–R334. https://doi.org/10.1530/ERC-17-0012

    Article  PubMed  Google Scholar 

  22. Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203. https://doi.org/10.1126/science.1200609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scarpa A, Chang DK, Nones K et al (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65–71. https://doi.org/10.1038/nature21063

    Article  CAS  PubMed  Google Scholar 

  24. Di Domenico A, Pipinikas CP, Maire RS et al (2020) Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression. Commun Biol 3:740. https://doi.org/10.1038/s42003-020-01479-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lakis V, Lawlor RT, Newell F et al (2021) DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Commun Biol 4:155. https://doi.org/10.1038/s42003-020-01469-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pipinikas CP, Berner AM, Sposito T, Thirlwell C (2019) The evolving (epi)genetic landscape of pancreatic neuroendocrine tumours. Endocr Relat Cancer 26:R519–R544. https://doi.org/10.1530/ERC-19-0175

    Article  CAS  PubMed  Google Scholar 

  27. Hackeng WM, Brosens LAA, Kim JY et al (2021) Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut. https://doi.org/10.1136/gutjnl-2020-322595 (gutjnl-2020-322595)

    Article  PubMed  Google Scholar 

  28. Elvebakken H, Perren A, Scoazec J-Y et al (2020) A consensus developed morphological re-evaluation of 196 high-grade gastroenteropancreatic neuroendocrine neoplasms and its clinical correlations. Neuroendocrinology. https://doi.org/10.1159/000511905

    Article  PubMed  Google Scholar 

  29. Røge R, Kristoffersen HL, Bzorek M et al (2019) NordiQC assessments of chromogranin A immunoassays. Appl Immunohistochem Mol Morphol 27:258–262. https://doi.org/10.1097/PAI.0000000000000743

    Article  CAS  PubMed  Google Scholar 

  30. Bellizzi AM (2020) Immunohistochemistry in the diagnosis and classification of neuroendocrine neoplasms: what can brown do for you? Hum Pathol 96:8–33. https://doi.org/10.1016/j.humpath.2019.12.002

    Article  PubMed  Google Scholar 

  31. Kim D, Viswanathan K, Goyal A, Rao R (2020) Insulinoma-associated protein 1 (INSM1) is a robust marker for identifying and grading pancreatic neuroendocrine tumors. Cancer Cytopathol 128:269–277. https://doi.org/10.1002/cncy.22242

    Article  CAS  PubMed  Google Scholar 

  32. McHugh KE, Mukhopadhyay S, Doxtader EE et al (2020) INSM1 Is a highly specific marker of neuroendocrine differentiation in primary neoplasms of the gastrointestinal tract, Appendix, and Pancreas. Am J Clin Pathol 153:811–820. https://doi.org/10.1093/ajcp/aqaa014

    Article  CAS  PubMed  Google Scholar 

  33. Mukhopadhyay S, Dermawan JK, Lanigan CP, Farver CF (2019) Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: an immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod Pathol 32:100–109. https://doi.org/10.1038/s41379-018-0122-7

    Article  CAS  PubMed  Google Scholar 

  34. Rooper LM, Sharma R, Li QK et al (2017) INSM1 demonstrates superior performance to the individual and combined use of synaptophysin, chromogranin and CD56 for diagnosing neuroendocrine tumors of the thoracic cavity. Am J Surg Pathol 41:1561–1569. https://doi.org/10.1097/PAS.0000000000000916

    Article  PubMed  Google Scholar 

  35. Sakakibara R, Kobayashi M, Takahashi N et al (2020) Insulinoma-associated protein 1 (INSM1) is a better marker for the diagnosis and prognosis estimation of small cell lung carcinoma than neuroendocrine phenotype markers such as chromogranin A, synaptophysin, and CD56. Am J Surg Pathol 44:757–764. https://doi.org/10.1097/PAS.0000000000001444

    Article  PubMed  Google Scholar 

  36. Staaf J, Tran L, Söderlund L et al (2020) Diagnostic value of insulinoma-associated protein 1 (INSM1) and comparison with established neuroendocrine markers in pulmonary cancers. Arch Pathol Lab Med 144:1075–1085. https://doi.org/10.5858/arpa.2019-0250-OA

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Huang J, He Y et al (2021) Insulinoma-associated protein 1(INSM1) is a superior marker for the diagnosis of gastroenteropancreatic neuroendoerine neoplasms: a meta-analysis. Endocrine. https://doi.org/10.1007/s12020-021-02754-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bellizzi AM (2020) Pathologic considerations in gastroenteropancreatic neuroendocrine tumors. Surg Oncol Clin N Am 29:185–208. https://doi.org/10.1016/j.soc.2019.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Couvelard A, Cros J, Kasajima A et al (2021) Digestive and lung high-grade neuroendocrine neoplasms: update and challenging issues. Curr Opin Endocr Metab Res 18:224–229. https://doi.org/10.1016/j.coemr.2021.04.002

    Article  CAS  Google Scholar 

  40. Digiacomo N, Bolzacchini E, Veronesi G et al (2019) Neuroendocrine differentiation, microsatellite instability, and tumor-infiltrating lymphocytes in advanced colorectal cancer with BRAF mutation. Clin Colorectal Cancer 18:e251–e260. https://doi.org/10.1016/j.clcc.2018.12.003

    Article  PubMed  Google Scholar 

  41. Fassan M, Milione M, Maddalena G et al (2021) Synaptophysin expression in V600EBRAF-mutated advanced colorectal cancers identifies a new subgroup of tumours with worse prognosis. Eur J Cancer 146:145–154. https://doi.org/10.1016/j.ejca.2021.01.016

    Article  CAS  PubMed  Google Scholar 

  42. La Rosa S, Franzi F, Marchet S et al (2009) The monoclonal anti-BCL10 antibody (clone 331.1) is a sensitive and specific marker of pancreatic acinar cell carcinoma and pancreatic metaplasia. Virchows Arch 454:133–142. https://doi.org/10.1007/s00428-008-0710-x

    Article  CAS  PubMed  Google Scholar 

  43. La Rosa S, Adsay V, Albarello L et al (2012) Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol. https://doi.org/10.1097/PAS.0b013e318263209d

    Article  PubMed  Google Scholar 

  44. Uhlig R, Contreras H, Weidemann S et al (2022) Carboxypeptidase A1 (CPA1) immunohistochemistry is highly sensitive and specific for acinar cell carcinoma (acc) of the pancreas. Am J Surg Pathol 46:97–104. https://doi.org/10.1097/PAS.0000000000001817

    Article  PubMed  Google Scholar 

  45. Kanehira K, Khoury T (2011) Neuroendocrine markers expression in pancreatic serous cystadenoma. Appl Immunohistochem Mol Morphol 19:141–146. https://doi.org/10.1097/PAI.0b013e3181f5023d

    Article  CAS  PubMed  Google Scholar 

  46. Mamilla D, Manukyan I, Fetsch PA et al (2020) Immunohistochemical distinction of paragangliomas from epithelial neuroendocrine tumors-gangliocytic duodenal and cauda equina paragangliomas align with epithelial neuroendocrine tumors. Hum Pathol 103:72–82. https://doi.org/10.1016/j.humpath.2020.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Basturk O, Yang Z, Tang LH et al (2015) The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol 39:683–690. https://doi.org/10.1097/PAS.0000000000000408

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fazio N, Milione M (2016) Heterogeneity of grade 3 gastroenteropancreatic neuroendocrine carcinomas: new insights and treatment implications. Cancer Treat Rev 50:61–67. https://doi.org/10.1016/j.ctrv.2016.08.006

    Article  PubMed  Google Scholar 

  49. Heetfeld M, Chougnet CN, Olsen IH et al (2015) Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 22:657–664. https://doi.org/10.1530/ERC-15-0119

    Article  CAS  PubMed  Google Scholar 

  50. Pellat A, Cottereau AS, Palmieri L-J et al (2021) Digestive well-differentiated grade 3 neuroendocrine tumors: current management and future directions. Cancers (Basel) 13:2448. https://doi.org/10.3390/cancers13102448

    Article  CAS  Google Scholar 

  51. Pellat A, Coriat R (2020) Well differentiated grade 3 neuroendocrine tumors of the digestive tract: a narrative review. J Clin Med 9(6):1677. https://doi.org/10.3390/jcm9061677

  52. Sorbye H, Kong G, Grozinsky-Glasberg S (2020) PRRT in high-grade gastroenteropancreatic neuroendocrine neoplasms (WHO G3). Endocr Relat Cancer 27:R67–R77. https://doi.org/10.1530/ERC-19-0400

    Article  CAS  PubMed  Google Scholar 

  53. Busico A, Maisonneuve P, Prinzi N et al (2020) Gastroenteropancreatic high-grade neuroendocrine neoplasms: histology and molecular analysis, two sides of the same coin. Neuroendocrinology 110:616–629. https://doi.org/10.1159/000503722

    Article  CAS  PubMed  Google Scholar 

  54. Shi H, Chen L, Zhang Q et al (2020) Concordance between the Ki-67 index cutoff value of 55% and differentiation in neuroendocrine tumor and neuroendocrine carcinoma in grade 3 pancreatic neuroendocrine neoplasms. Pancreas 49:1378–1382. https://doi.org/10.1097/MPA.0000000000001693

    Article  CAS  PubMed  Google Scholar 

  55. Sorbye H, Welin S, Langer SW et al (2013) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24:152–160. https://doi.org/10.1093/annonc/mds276

    Article  CAS  PubMed  Google Scholar 

  56. Ali AS, Grönberg M, Federspiel B et al (2017) Expression of p53 protein in high-grade gastroenteropancreatic neuroendocrine carcinoma. PLoS ONE 12:e0187667. https://doi.org/10.1371/journal.pone.0187667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hadoux J, Kanaan C, Durand A et al (2021) Prognostic factors of metastatic neuroendocrine carcinoma under first-line treatment with platinum etoposide with a focus on NEC score and Rb expression: results from the multicentre RBNEC study of the Groupe d’Etude des Tumeurs Endocrines (GTE) and the ENDOCAN-RENATEN network. Eur J Cancer 152:100–115. https://doi.org/10.1016/j.ejca.2021.04.030

    Article  CAS  PubMed  Google Scholar 

  58. Konukiewitz B, Schlitter AM, Jesinghaus M et al (2017) Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20. Mod Pathol 30:587–598. https://doi.org/10.1038/modpathol.2016.217

    Article  CAS  PubMed  Google Scholar 

  59. Yachida S, Vakiani E, White CM et al (2012) Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 36:173–184. https://doi.org/10.1097/PAS.0b013e3182417d36

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cros J, Théou-Anton N, Gounant V et al (2021) Specific genomic alterations in high-grade pulmonary neuroendocrine tumours with carcinoid morphology. Neuroendocrinology 111:158–169. https://doi.org/10.1159/000506292

    Article  CAS  PubMed  Google Scholar 

  61. Yeo M-K, Yoon N, Bae GE (2021) Clinicopathologic and molecular characteristics of gastrointestinal MiNENs. Front Oncol 11:709097. https://doi.org/10.3389/fonc.2021.709097

    Article  PubMed  PubMed Central  Google Scholar 

  62. Luong TV, Nisa Z, Watkins J, Hayes AR (2020) Should immunohistochemical expression of mismatch repair (MMR) proteins and microsatellite instability (MSI) analysis be routinely performed for poorly differentiated colorectal neuroendocrine carcinomas? Endocrinol Diabetes Metab Case Rep 2020:EDM200058. https://doi.org/10.1530/EDM-20-0058

    Article  PubMed  Google Scholar 

  63. Sahnane N, Furlan D, Monti M et al (2015) Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocr Relat Cancer 22:35–45. https://doi.org/10.1530/ERC-14-0410

    Article  CAS  PubMed  Google Scholar 

  64. Merola E, Zandee W, de Mestier L et al (2021) Histopathological revision for gastroenteropancreatic neuroendocrine neoplasms in expert centers: does it make the difference? Neuroendocrinology 111:170–177. https://doi.org/10.1159/000507082

    Article  CAS  PubMed  Google Scholar 

  65. Lemelin A, Barritault M, Hervieu V et al (2019) O6-methylguanine-DNA methyltransferase (MGMT) status in neuroendocrine tumors: a randomized phase II study (MGMT-NET). Dig Liver Dis 51:595–599. https://doi.org/10.1016/j.dld.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  66. Frizziero M, Chakrabarty B, Nagy B et al (2020) Mixed neuroendocrine non-neuroendocrine neoplasms: a systematic review of a controversial and underestimated diagnosis. J Clin Med 9:E273. https://doi.org/10.3390/jcm9010273

    Article  PubMed  Google Scholar 

  67. Uccella S, La Rosa S (2020) Looking into digestive mixed neuroendocrine - nonneuroendocrine neoplasms: subtypes, prognosis, and predictive factors. Histopathology 77:700–717. https://doi.org/10.1111/his.14178

    Article  PubMed  Google Scholar 

  68. Milione M, Maisonneuve P, Pellegrinelli A et al (2018) Ki67 proliferative index of the neuroendocrine component drives MANEC prognosis. Endocr Relat Cancer 25:583–593. https://doi.org/10.1530/ERC-17-0557

    Article  CAS  PubMed  Google Scholar 

  69. Jesinghaus M, Konukiewitz B, Keller G et al (2017) Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Mod Pathol 30:610–619. https://doi.org/10.1038/modpathol.2016.220

    Article  CAS  PubMed  Google Scholar 

  70. Scardoni M, Vittoria E, Volante M et al (2014) Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract: targeted next-generation sequencing suggests a monoclonal origin of the two components. Neuroendocrinology 100:310–316. https://doi.org/10.1159/000369071

    Article  CAS  PubMed  Google Scholar 

  71. Woischke C, Schaaf CW, Yang H-M et al (2017) In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Mod Pathol 30:95–103. https://doi.org/10.1038/modpathol.2016.150

    Article  CAS  PubMed  Google Scholar 

  72. La Rosa S (2021) Challenges in high-grade neuroendocrine neoplasms and mixed neuroendocrine/non-neuroendocrine neoplasms. Endocr Pathol 32:245–257. https://doi.org/10.1007/s12022-021-09676-z

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hechtman JF, Klimstra DS, Nanjangud G et al (2019) Performance of DAXX immunohistochemistry as a screen for DAXX mutations in pancreatic neuroendocrine tumors. Pancreas 48:396–399. https://doi.org/10.1097/MPA.0000000000001256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marinoni I, Kurrer AS, Vassella E et al (2014) Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 146:453-460.e5. https://doi.org/10.1053/j.gastro.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  75. Singhi AD, Liu T-C, Roncaioli JL et al (2017) Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clin Cancer Res 23:600–609. https://doi.org/10.1158/1078-0432.CCR-16-1113

    Article  CAS  PubMed  Google Scholar 

  76. Luchini C, Lawlor RT, Bersani S et al (2021) Alternative Lengthening of telomeres (ALT) in pancreatic neuroendocrine tumors: ready for prime-time in clinical practice? Curr Oncol Rep 23:106. https://doi.org/10.1007/s11912-021-01096-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marinoni I (2021) Prognostic value of DAXX/ATRX loss of expression and ALT activation in PanNETs: is it time for clinical implementation? Gut. https://doi.org/10.1136/gutjnl-2021-324664 (gutjnl-2021-324664)

    Article  PubMed  Google Scholar 

  78. Hackeng WM, Morsink FHM, Moons LMG et al (2020) Assessment of ARX expression, a novel biomarker for metastatic risk in pancreatic neuroendocrine tumors, in endoscopic ultrasound fine-needle aspiration. Diagn Cytopathol 48:308–315. https://doi.org/10.1002/dc.24368

    Article  PubMed  Google Scholar 

  79. VandenBussche CJ, Allison DB, Graham MK et al (2017) Alternative lengthening of telomeres and ATRX/DAXX loss can be reliably detected in FNAs of pancreatic neuroendocrine tumors. Cancer Cytopathol 125:544–551. https://doi.org/10.1002/cncy.21857

    Article  CAS  PubMed  Google Scholar 

  80. Cavalcanti E, Armentano R, Valentini AM et al (2017) Role of PD-L1 expression as a biomarker for GEP neuroendocrine neoplasm grading. Cell Death Dis 8:e3004. https://doi.org/10.1038/cddis.2017.401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Milione M, Miceli R, Barretta F et al (2019) Microenvironment and tumor inflammatory features improve prognostic prediction in gastro-entero-pancreatic neuroendocrine neoplasms. J Pathol Clin Res 5:217–226. https://doi.org/10.1002/cjp2.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Young K, Lawlor RT, Ragulan C et al (2020) Immune landscape, evolution, hypoxia-mediated viral mimicry pathways and therapeutic potential in molecular subtypes of pancreatic neuroendocrine tumours. Gut. https://doi.org/10.1136/gutjnl-2020-321016 (gutjnl-2020-321016)

    Article  PubMed  Google Scholar 

  83. Bösch F, Brüwer K, Altendorf-Hofmann A et al (2019) Immune checkpoint markers in gastroenteropancreatic neuroendocrine neoplasia. Endocr Relat Cancer 26:293–301. https://doi.org/10.1530/ERC-18-0494

    Article  PubMed  Google Scholar 

  84. Vanoli A, Perfetti V, Furlan D et al (2020) Long survival and prolonged remission after surgery and chemotherapy in a metastatic mismatch repair deficient pancreatic neuroendocrine carcinoma with MLH1/PMS2 immunodeficiency and minimal microsatellite shift. Endocr Pathol 31:411–417. https://doi.org/10.1007/s12022-020-09622-5

    Article  CAS  PubMed  Google Scholar 

  85. de Mestier L, Couvelard A, Blazevic A et al (2020) Critical appraisal of MGMT in digestive NET treated with alkylating agents. Endocr Relat Cancer 27:R391–R405. https://doi.org/10.1530/ERC-20-0227

    Article  PubMed  Google Scholar 

  86. Campana D, Walter T, Pusceddu S et al (2018) Correlation between MGMT promoter methylation and response to temozolomide-based therapy in neuroendocrine neoplasms: an observational retrospective multicenter study. Endocrine 60:490–498. https://doi.org/10.1007/s12020-017-1474-3

    Article  CAS  PubMed  Google Scholar 

  87. Walter T, van Brakel B, Vercherat C et al (2015) O6-methylguanine-DNA methyltransferase status in neuroendocrine tumours: prognostic relevance and association with response to alkylating agents. Br J Cancer 112:523–531. https://doi.org/10.1038/bjc.2014.660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cros J, Hentic O, Rebours V et al (2016) MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr Relat Cancer 23:625–633. https://doi.org/10.1530/ERC-16-0117

    Article  CAS  PubMed  Google Scholar 

  89. De Rycke O, Walter T, Perrier M et al (2021) Alkylating agent rechallenge in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer 28:457–466. https://doi.org/10.1530/ERC-21-0034

    Article  PubMed  Google Scholar 

  90. Lacombe C, De Rycke O, Couvelard A et al (2021) Biomarkers of response to etoposide-platinum chemotherapy in patients with grade 3 neuroendocrine neoplasms. Cancers (Basel) 13:643. https://doi.org/10.3390/cancers13040643

    Article  CAS  Google Scholar 

  91. Hijioka S, Hosoda W, Matsuo K et al (2017) Rb loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: a Japanese multicenter pancreatic NEN-G3 study. Clin Cancer Res 23:4625–4632. https://doi.org/10.1158/1078-0432.CCR-16-3135

    Article  CAS  PubMed  Google Scholar 

  92. Tanaka H, Hijioka S, Hosoda W et al (2020) Pancreatic neuroendocrine carcinoma G3 may be heterogeneous and could be classified into two distinct groups. Pancreatology 20:1421–1427. https://doi.org/10.1016/j.pan.2020.07.400

    Article  CAS  PubMed  Google Scholar 

  93. Fraune C, Simon R, Hube-Magg C et al (2020) Homogeneous MMR deficiency throughout the entire tumor mass occurs in a subset of colorectal neuroendocrine carcinomas. Endocr Pathol 31:182–189. https://doi.org/10.1007/s12022-020-09612-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mehnert JM, Bergsland E, O’Neil BH et al (2020) Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: results from the KEYNOTE-028 study. Cancer 126:3021–3030. https://doi.org/10.1002/cncr.32883

    Article  CAS  PubMed  Google Scholar 

  95. Strosberg J, Mizuno N, Doi T et al (2020) Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase II KEYNOTE-158 study. Clin Cancer Res 26:2124–2130. https://doi.org/10.1158/1078-0432.CCR-19-3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. MacFarlane AW, Yeung H-M, Alpaugh RK et al (2021) Impacts of pembrolizumab therapy on immune phenotype in patients with high-grade neuroendocrine neoplasms. Cancer Immunol Immunother 70:1893–1906. https://doi.org/10.1007/s00262-020-02811-5

    Article  CAS  PubMed  Google Scholar 

  97. De Dosso S, Treglia G, Pascale M et al (2019) Detection rate of unknown primary tumour by using somatostatin receptor PET/CT in patients with metastatic neuroendocrine tumours: a meta-analysis. Endocrine 64:456–468. https://doi.org/10.1007/s12020-019-01934-9

    Article  CAS  PubMed  Google Scholar 

  98. Imperiale A, Rust E, Gabriel S et al (2014) 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med 55:367–372. https://doi.org/10.2967/jnumed.113.126896

    Article  CAS  PubMed  Google Scholar 

  99. Bellizzi AM (2020) SATB2 in neuroendocrine neoplasms: strong expression is restricted to well-differentiated tumours of lower gastrointestinal tract origin and is most frequent in Merkel cell carcinoma among poorly differentiated carcinomas. Histopathology 76:251–264. https://doi.org/10.1111/his.13943

    Article  PubMed  Google Scholar 

  100. Yang Z, Klimstra DS, Hruban RH, Tang LH (2017) Immunohistochemical characterization of the origins of metastatic well-differentiated neuroendocrine tumors to the liver. Am J Surg Pathol 41:915–922. https://doi.org/10.1097/PAS.0000000000000876

    Article  PubMed  Google Scholar 

  101. Zhao L-H, Chen C, Mao C-Y et al (2019) Value of SATB2, ISL1, and TTF1 to differentiate rectal from other gastrointestinal and lung well-differentiated neuroendocrine tumors. Pathol Res Pract 215:152448. https://doi.org/10.1016/j.prp.2019.152448

    Article  CAS  PubMed  Google Scholar 

  102. Hermann G, Konukiewitz B, Schmitt A et al (2011) Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 459:147–154. https://doi.org/10.1007/s00428-011-1118-6

    Article  CAS  PubMed  Google Scholar 

  103. Samdani RT, Wasylishen AR, Halperin DM et al (2019) Loss of menin expression by immunohistochemistry in pancreatic neuroendocrine tumors: comparison between primary and metastatic tumors. Pancreas 48:510–513. https://doi.org/10.1097/MPA.0000000000001274

    Article  CAS  PubMed  Google Scholar 

  104. Simbolo M, Barbi S, Fassan M et al (2019) Gene expression profiling of lung atypical carcinoids and large cell neuroendocrine carcinomas identifies three transcriptomic subtypes with specific genomic alterations. J Thorac Oncol 14:1651–1661. https://doi.org/10.1016/j.jtho.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  105. Tirosh A, Killian JK, Petersen D et al (2020) Distinct DNA methylation signatures in neuroendocrine tumors specific for primary site and inherited predisposition. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa477

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gehrcken L, Sauerer T, Schaft N, Dörrie J (2021) T-cell responses in Merkel cell carcinoma: implications for improved immune checkpoint blockade and other therapeutic options. Int J Mol Sci 22:8679. https://doi.org/10.3390/ijms22168679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shalhout SZ, Emerick KS, Kaufman HL, Miller DM (2021) Immunotherapy for non-melanoma skin cancer. Curr Oncol Rep 23:125. https://doi.org/10.1007/s11912-021-01120-z

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kervarrec T, Tallet A, Miquelestorena-Standley E et al (2019) Diagnostic accuracy of a panel of immunohistochemical and molecular markers to distinguish Merkel cell carcinoma from other neuroendocrine carcinomas. Mod Pathol 32:499–510. https://doi.org/10.1038/s41379-018-0155-y

    Article  CAS  PubMed  Google Scholar 

  109. Yu S, Hornick JL, Gonzalez RS (2021) An algorithmic approach utilizing CK7, TTF1, beta-catenin, CDX2, and SSTR2A can help differentiate between gastrointestinal and pulmonary neuroendocrine carcinomas. Virchows Arch. https://doi.org/10.1007/s00428-021-03085-7

    Article  PubMed  Google Scholar 

  110. Ahmed M (2020) Gastrointestinal neuroendocrine tumors in 2020. World J Gastrointest Oncol 12:791–807. https://doi.org/10.4251/wjgo.v12.i8.791

    Article  PubMed  PubMed Central  Google Scholar 

  111. Trinh VQ-H, Shi C, Ma C (2020) Gastric neuroendocrine tumours from long-term proton pump inhibitor users are indolent tumours with good prognosis. Histopathology 77:865–876. https://doi.org/10.1111/his.14220

    Article  PubMed  Google Scholar 

  112. McCarthy DM (2020) Proton pump inhibitor use, hypergastrinemia, and gastric carcinoids-what is the relationship? Int J Mol Sci 21:E662. https://doi.org/10.3390/ijms21020662

    Article  CAS  PubMed  Google Scholar 

  113. Rais R, Trikalinos NA, Liu J, Chatterjee D (2021) Enterochromaffin-like cell hyperplasia-associated gastric neuroendocrine tumors may arise in the setting of proton pump inhibitor use: the need for a new clinicopathologic category. Arch Pathol Lab Med. https://doi.org/10.5858/arpa.2020-0315-OA

    Article  Google Scholar 

  114. de Herder WW, Zandee WT, Hofland J (2000) Somatostatinoma. In: Feingold KR, Anawalt B, Boyce A, et al (eds) Endotext. MDText.com, Inc., South Dartmouth (MA)

  115. Vanoli A, La Rosa S, Klersy C et al (2017) Four neuroendocrine tumor types and neuroendocrine carcinoma of the duodenum: analysis of 203 cases. Neuroendocrinology 104:112–125. https://doi.org/10.1159/000444803

    Article  CAS  PubMed  Google Scholar 

  116. Zakaria A, Hammad N, Vakhariya C, Raphael M (2019) Somatostatinoma presented as double-duct sign. Case Rep Gastrointest Med 2019:9506405. https://doi.org/10.1155/2019/9506405

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wonn SM, Ratzlaff AN, Pommier SJ et al (2021) Evaluation of the prognosis for N2 status in patients with small bowel neuroendocrine tumors. Am J Surg 221:1135–1140. https://doi.org/10.1016/j.amjsurg.2021.03.036

    Article  PubMed  Google Scholar 

  118. Wu L, Chen F, Chen S, Wang L (2018) The lymph node ratio optimizes staging in patients with small intestinal neuroendocrine tumors. Neuroendocrinology 107:209–217. https://doi.org/10.1159/000491017

    Article  CAS  PubMed  Google Scholar 

  119. Xiao C, Song B, Yi P et al (2020) Deaths of colon neuroendocrine tumors are associated with increasing metastatic lymph nodes and lymph node ratio. J Gastrointest Oncol 11:1146–1154. https://doi.org/10.21037/jgo-20-444

    Article  PubMed  PubMed Central  Google Scholar 

  120. Elias E, Ardalan A, Lindberg M et al (2021) Independent somatic evolution underlies clustered neuroendocrine tumors in the human small intestine. Nat Commun 12:6367. https://doi.org/10.1038/s41467-021-26581-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Samsom KG, Levy S, van Veenendaal LM et al (2021) Driver mutations occur frequently in metastases of well-differentiated small intestine neuroendocrine tumours. Histopathology 78:556–566. https://doi.org/10.1111/his.14252

    Article  PubMed  Google Scholar 

  122. Noor M, Huber AR, Cates JMM, Gonzalez RS (2021) Risk factors for progression of appendiceal neuroendocrine tumours: low-stage tumours <5 mm appear to be overwhelmingly indolent and may merit a separate designation. Histopathology 79:416–426. https://doi.org/10.1111/his.14369

    Article  PubMed  Google Scholar 

  123. Volante M, Grillo F, Massa F et al (2021) Neuroendocrine neoplasms of the appendix, colon and rectum. Pathologica 113:19–27. https://doi.org/10.32074/1591-951X-230

    Article  PubMed  PubMed Central  Google Scholar 

  124. de Mestier L, Lorenzo D, Fine C et al (2019) Endoscopic, transanal, laparoscopic, and transabdominal management of rectal neuroendocrine tumors. Best Pract Res Clin Endocrinol Metab 33:101293. https://doi.org/10.1016/j.beem.2019.101293

    Article  PubMed  Google Scholar 

  125. Chida K, Watanabe J, Hirasawa K et al (2020) A novel risk-scoring system for predicting lymph node metastasis of rectal neuroendocrine tumors. Ann Gastroenterol Surg 4:562–570. https://doi.org/10.1002/ags3.12355

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AC and JC were both involved in writing the review, preparing the figures, and correcting the manuscript.

Corresponding author

Correspondence to Anne Couvelard.

Ethics declarations

Ethics approval

The authors declare that they have followed the principles of ethical and professional conduct.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couvelard, A., Cros, J. An update on the development of concepts, diagnostic criteria, and challenging issues for neuroendocrine neoplasms across different digestive organs. Virchows Arch 480, 1129–1148 (2022). https://doi.org/10.1007/s00428-022-03306-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03306-7

Keywords

Navigation