Skip to main content
Log in

GLI1-altered mesenchymal tumor: a clinicopathological and molecular analysis of ten additional cases of an emerging entity

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

We report 10 additional cases of GLI1-altered mesenchymal tumor to further delineate its clinicopathological and molecular spectrum. There were seven males and three females with a median age of 31 years (range 1.3 ~ 75 years). Five tumors arose in the oral cavity, one each in the stomach, uterine cervix, elbow, groin, and thigh. Histologically, all cases except one were composed of monomorphic round to epithelioid cells showing an infiltrative multinodular growth pattern. The neoplastic cells were surrounded by a rich network of capillary vessels. Vessel invasion or subendothelial protrusion into the vascular space was commonly present. One tumor developed regional lymph node metastasis. The remaining case showed a predominantly spindle cell tumor. By immunohistochemistry, most tumors showed diffuse staining of CD56 (8/8) with variable expression of S100 protein (7/8). In three tumors harboring amplified genes, strong and diffuse nuclear staining of MDM2 (2/3) and CDK4 (3/3) were noted. Next-generation sequencing (NGS) studies revealed GLI1 fusions in 7 cases and GLI1 amplification in 2 cases, which were validated by fluorescence in situ hybridization (FISH) analysis in the majority of cases. One case did not show fusion gene by RNA-seq, but FISH revealed both amplification and break-apart of GLI1 gene. Follow-up information showed local recurrences in two patients. All other patients remained disease-free at the last follow-up. Our study further demonstrates that mesenchymal tumors with GLI1 alterations represent a distinctive clinicopathological entity. Although the tumor has a propensity for the tongue, it can also arise in somatic soft tissues as well as in visceral organs. Based on the characteristic morphological features and genomic profiles, we propose the term “GLI1-altered mesenchymal tumor” to describe this emerging entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dahlén A, Fletcher CD, Mertens F, Fletcher JA, Perez-Atayde AR, Hicks MJ, Debiec-Rychter M, Sciot R, Wejde J, Wedin R, Mandahl N, Panagopoulos I (2004) Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol 164(5):1645–1653. https://doi.org/10.1016/s0002-9440(10)63723-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bridge JA, Sanders K, Huang D, Nelson M, Neff JR, Muirhead D, Walker C, Seemayer TA, Sumegi J (2012) Pericytoma with t(7;12) and ACTB-GLI1 fusion arising in bone. Hum Pathol 43(9):1524–1529. https://doi.org/10.1016/j.humpath.2012.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Castro E, Cortes-Santiago N, Ferguson LM, Rao PH, Venkatramani R, López-Terrada D (2016) Translocation t(7;12) as the sole chromosomal abnormality resulting in ACTB-GLI1 fusion in pediatric gastric pericytoma. Hum Pathol 53:137–141. https://doi.org/10.1016/j.humpath.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  4. Koh NWC, Seow WY, Lee YT, Lam JCM, Lian DWQ (2019) Pericytoma with t(7;12): the first ovarian case reported and a review of the literature. Int J Gynecol Pathol 38(5):479–484. https://doi.org/10.1097/PGP.0000000000000542

    Article  PubMed  Google Scholar 

  5. Kerr DA, Pinto A, Subhawong TK, Wilky BA, Schlumbrecht MP, Antonescu CR, Nielsen GP, Rosenberg AE (2019) Pericytoma with t(7;12) and ACTB-GLI1 fusion: reevaluation of an unusual entity and its relationship to the spectrum of GLI1 fusion-related neoplasms. Am J Surg Pathol 43(12):1682–1692. https://doi.org/10.1097/PAS.0000000000001360

    Article  PubMed  PubMed Central  Google Scholar 

  6. Antonescu CR, Agaram NP, Sung YS, Zhang L, Swanson D, Dickson BC (2018) A distinct malignant epithelioid neoplasm with GLI1 gene rearrangements, frequent S100 protein expression, and metastatic potential: expanding the spectrum of pathologic entities with ACTB/MALAT1/PTCH1-GLI1 fusions. Am J Surg Pathol 42(4):553–560. https://doi.org/10.1097/PAS.0000000000001010

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agaram NP, Zhang L, Sung YS, Singer S, Stevens T, Prieto-Granada CN, Bishop JA, Wood BA, Swanson D, Dickson BC, Antonescu CR (2019) GLI1-amplifications expand the spectrum of soft tissue neoplasms defined by GLI1 gene fusions. Mod Pathol 32(11):1617–1626. https://doi.org/10.1038/s41379-019-0293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu B, Chang K, Folpe AL, Kao YC, Wey SL, Huang HY, Gill AJ, Rooper L, Bishop JA, Dickson BC, Lee JC, Antonescu CR (2020) Head and neck mesenchymal neoplasms with GLI1 gene alterations: a pathologic entity with distinct histologic features and potential for distant metastasis. Am J Surg Pathol 44(6):729–737. https://doi.org/10.1097/PAS.0000000000001439

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ, Wong AJ, Vogelstein B (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236(4797):70–73. https://doi.org/10.1126/science.3563490

    Article  CAS  PubMed  Google Scholar 

  10. Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332(6162):371–374. https://doi.org/10.1038/332371a0

    Article  CAS  PubMed  Google Scholar 

  11. Hegde GV, Munger CM, Emanuel K, Joshi AD, Greiner TC, Weisenburger DD, Vose JM (2008) Joshi SS (2008) Targeting of sonic hedgehog-GLI signaling: a potential strategy to improve therapy for mantle cell lymphoma. Mol Cancer Ther 7(6):1450–1460. https://doi.org/10.1158/1535-7163.MCT-07-2118

    Article  CAS  PubMed  Google Scholar 

  12. Mazumdar T, De Vecchio J, Agyeman A, Shi T, Houghton JA (2011) The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer. Oncotarget 2(8):638–645. https://doi.org/10.18632/oncotarget.310

    Article  PubMed  PubMed Central  Google Scholar 

  13. Doheny D, Manore SG, Wong GL, Lo HW (2020) Hedgehog signaling and truncated GLI1 in cancer. Cells 9(9):2114. https://doi.org/10.3390/cells9092114

    Article  CAS  PubMed Central  Google Scholar 

  14. Aivazian K, Mahar A, Jackett LA, Kimble RM, Scolyer RA (2021) GLI activated epithelioid cell tumour: report of a case and proposed new terminology. Pathology 53(2):267–270. https://doi.org/10.1016/j.pathol.2020.07.013

    Article  CAS  PubMed  Google Scholar 

  15. Panagopoulos I, Gorunova L, Rise TV, Andersen K, Micci F, Heim S (2020) An unbalanced chromosome translocation between 7p22 and 12q13 leads to ACTB-GLI1 fusion in pericytoma. Anticancer Res 40(3):1239–1245. https://doi.org/10.21873/anticanres.14065

    Article  PubMed  Google Scholar 

  16. Prall OWJ, McEvoy CRE, Byrne DJ, Iravani A, Browning J, Choong DY, Yellapu B, O’Haire S, Smith K, Luen SJ, Mitchell PLR, Desai J, Fox SB, Fellowes A, Xu H (2020) A malignant neoplasm from the jejunum with a MALAT1-GLI1 fusion and 26-year survival history. Int J Surg Pathol 28(5):553–562. https://doi.org/10.1177/1066896919900548

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Nunez O, Surrey LF, Alaggio R, Herradura A, McGough RL, John I (2021) Novel APOD-GLI1 rearrangement in a sarcoma of unknown lineage. Histopathology 78(2):338–340. https://doi.org/10.1111/his.14235

    Article  PubMed  Google Scholar 

  18. Nitta Y, Takeda M, Fujii T, Itami H, Tsukamoto S, Honoki K, Ohbayashi C (2021) A case of pericytic neoplasm in the shoulder with a novel DERA-GLI1 gene fusion. Histopathology 78(3):466–469. https://doi.org/10.1111/his.14280

    Article  PubMed  Google Scholar 

  19. Alwaqfi RR, Samuelson MI, Guseva NN, Ouyang M, Bossler AD, Ma D (2021) PTCH1-GLI1 fusion-positive ovarian tumor: report of a unique case with response to tyrosine kinase inhibitor Pazopanib. J Natl Compr Canc Netw 19(9):998–1004. https://doi.org/10.6004/jnccn.2021.7058

    Article  PubMed  Google Scholar 

  20. Jiang Q, Galiègue-Zouitina S, Roumier C, Hildebrand MP, Thomas S, Coignet LJ (2001) Genomic organization and refined mapping of the human nuclear corepressor 2 (NCOR2)/silencing mediator of retinoid and thyroid hormone receptor (SMRT) gene on chromosome 12q24.3. Cytogenet Cell Genet 92(3–4):217–220. https://doi.org/10.1159/000056906

    Article  CAS  PubMed  Google Scholar 

  21. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457. https://doi.org/10.1038/377454a0

    Article  CAS  PubMed  Google Scholar 

  22. Tauziède-Espariat A, Beccaria K, Pierron G, Guillemot D, Hasty L, Abbou S, Dangouloff-Ros V, Boddaert N, Chrétien F, Varlet P, Lechapt E (2021) Pineal alveolar rhabdomyosarcoma with PAX3:NCOA2 fusion inducing OLIG2 expression, a potential pitfall in the central nervous system. Histopathology 79(3):437–439. https://doi.org/10.1111/his.14364

    Article  PubMed  Google Scholar 

  23. Kao YC, Bennett JA, Suurmeijer AJH, Dickson BC, Swanson D, Wanjari P, Zhang L, Lee JC, Antonescu CR (2021) Recurrent MEIS1-NCOA2/1 fusions in a subset of low-grade spindle cell sarcomas frequently involving the genitourinary and gynecologic tracts. Mod Pathol 34(6):1203–1212. https://doi.org/10.1038/s41379-021-00744-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agaimy A, Michal M, Stoehr R, Ferrazzi F, Fabian P, Michal M, Franchi A, Haller F, Folpe AL, Kösemehmetoğlu K (2021) Recurrent novel HMGA2-NCOR2 fusions characterize a subset of keratin-positive giant cell-rich soft tissue tumours. Mod Pathol 34(8):1507–1520. https://doi.org/10.1038/s41379-021-00789-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426(6966):559–563. https://doi.org/10.1038/nature02184

    Article  CAS  PubMed  Google Scholar 

  26. Yao J, Kwon SE, Gaffaney JD, Dunning FM, Chapman ER (2011) Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 15(2):243–249. https://doi.org/10.1038/nn.3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker K, Gordon SL, Melland H, Bumbak F, Scott DJ, Jiang TJ, Owen D, Turner BJ, Boyd SG, Rossi M, Al-Raqad M, Elpeleg O, Peck D, Mancini GMS, Wilke M, Zollino M, Marangi G, Weigand H, Borggraefe I, Haack T, Stark Z, Sadedin S; Broad Center for Mendelian Genomics, Tan TY, Jiang Y, Gibbs RA, Ellingwood S, Amaral M, Kelley W, Kurian MA, Cousin MA, Raymond FL (2018) SYT1-associated neurodevelopmental disorder: a case series. Brain 141(9):2576-2591. https://doi.org/10.1093/brain/awy209.

  28. Baker K, Gordon SL, Grozeva D, van Kogelenberg M, Roberts NY, Pike M, Blair E, Hurles ME, Chong WK, Baldeweg T, Kurian MA, Boyd SG, Cousin MA, Raymond FL (2015) Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J Clin Invest 125:1670–1678. https://doi.org/10.1172/JCI79765

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kathir KM, Gao L, Rajalingam D, Daily AE, Brixey S, Liu H, Davis D, Adams P, Prudovsky I, Kumar TK (2010) NMR characterization of copper and lipid interactions of the C2B domain of synaptotagmin I-relevance to the non-classical secretion of the human acidic fibroblast growth factor (hFGF-1). Biochim Biophys Acta 1798(2):297–302. https://doi.org/10.1016/j.bbamem.2009.09.024

    Article  CAS  PubMed  Google Scholar 

  30. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253. https://doi.org/10.1038/nrd2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Egan JB, Barrett MT, Champion MD, Middha S, Lenkiewicz E, Evers L, Francis P, Schmidt J, Shi CX, Van Wier S, Badar S, Ahmann G, Kortuem KM, Boczek NJ, Fonseca R, Craig DW, Carpten JD, Borad MJ, Stewart AK (2014) Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements. PLoS ONE 9(2):e87113. https://doi.org/10.1371/journal.pone.0087113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, Marmur E, Rudin CM, Chang AL, Low JA, Mackey HM, Yauch RL, Graham RA, Reddy JC, Hauschild A (2012) Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 366(23):2171–2179. https://doi.org/10.1056/NEJMoa1113713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 8(2):22. https://doi.org/10.3390/cancers8020022

    Article  CAS  Google Scholar 

  34. Katoh M (2019) Genomic testing, tumour microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 33(8):953–970. https://doi.org/10.1042/CS20180845

    Article  Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants from the Shanghai Science and Technology Development fund (19MC1911000).

This study has been approved by the institutional review board (IRB) of both institutions. Informed consent was obtained from the patients or guardians.

Author information

Authors and Affiliations

Authors

Contributions

Jiahan Liu performed the sample collection and research and wrote the paper. Rongjun Mao, I Weng Lao, and Lin Yu contributed to the research design. Qianming Bai and Xiaoyan Zhou did FISH and NGS analyses. Jian Wang designed the research and gave the final approval of the manuscript. All the authors critically reviewed and approved the manuscript.

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Mao, R., Lao, I. et al. GLI1-altered mesenchymal tumor: a clinicopathological and molecular analysis of ten additional cases of an emerging entity. Virchows Arch 480, 1087–1099 (2022). https://doi.org/10.1007/s00428-021-03224-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-021-03224-0

Keywords

Navigation