Skip to main content
Log in

Error modulates categorization of subsecond durations in multitasking contexts

  • Research
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Monitoring errors consumes limited cognitive resources and can disrupt subsequent task performance in multitasking scenarios. However, there is a dearth of empirical evidence concerning this interference with prospective estimation of time. In this study, we sought to investigate this issue through a serial multitasking experiment, employing a temporal bisection task as the primary task. We introduced two task contexts by implementing two different concurrent tasks. In one context, participants were tasked with discriminating the size difference between two visual items, while in the other context, they were required to judge the temporal order of similar visual items. The primary task remained the same for the entire experiment. Psychophysical metrics, including subjective bias (determined by the bisection point) and temporal sensitivity (measured by the Weber ratio), in addition to reaction time, remained unaltered in the primary task regardless of the perceptual context exerted by the concurrent tasks. However, commission of error in the concurrent tasks (i.e., non-specific errors) led to a right-ward shift in the bisection point, indicating underestimation of time after errors. Applying a drift-diffusion framework for temporal decision making, we observed alterations in the starting point and drift rate parameters, supporting the error-induced underestimation of time. The error-induced effects were all diminished with increasing a delay between the primary and concurrent task, indicating an adaptive response to errors at a trial level. Furthermore, the error-induced shift in the bisection point was diminished in the second half of the experiment, probably because of a decline in error significance and subsequent monitoring response. These findings indicate that non-specific errors impact the prospective estimation of time in multitasking scenarios, yet their effects can be alleviated through both local and global reallocation of cognitive resources from error processing to time processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Akdoğan, B., & Balcı, F. (2016). Stimulus probability effects on temporal bisection performance of mice (Mus musculus). Animal Cognition, 19, 15–30.

    Article  PubMed  Google Scholar 

  • Alards-Tomalin, D., Walker, A. C., Kravetz, A., & Leboe-McGowan, L. C. (2016). Numerical Context and Time Perception: Contrast effects and the Perceived duration of numbers. Perception, 45(1–2), 222–245. https://doi.org/10.1177/0301006615594905.

    Article  PubMed  Google Scholar 

  • Allan, L. G., & Gibbon, J. (1991). Human bisection at the geometric mean. Learning and Motivation, 22(1), 39–58. https://doi.org/10.1016/0023-9690(91)90016-2.

    Article  Google Scholar 

  • Balcı, F., & Simen, P. (2014). Decision processes in temporal discrimination. Acta Psychologica, 149, 157–168. https://doi.org/10.1016/j.actpsy.2014.03.005.

    Article  PubMed  Google Scholar 

  • Beatty, P. J., Buzzell, G. A., Roberts, D. M., & McDonald, C. G. (2018). Speeded response errors and the error-related negativity modulate early sensory processing. Neuroimage, 183, 112–120. https://doi.org/10.1016/j.neuroimage.2018.08.009.

    Article  PubMed  Google Scholar 

  • Block, R. A., & Gruber, R. P. (2014). Time perception, attention, and memory: A selective review. Acta Psychologica, 149, 129–133. https://doi.org/10.1016/j.actpsy.2013.11.003.

    Article  PubMed  Google Scholar 

  • Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134(3), 330–343. https://doi.org/10.1016/j.actpsy.2010.03.006.

    Article  PubMed  Google Scholar 

  • Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.

    Article  CAS  PubMed  Google Scholar 

  • Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59(7), 1118–1140. https://doi.org/10.3758/BF03205526.

    Article  CAS  Google Scholar 

  • Brown, S. W. (2006). Timing and executive function: Bidirectional interference between concurrent temporal production and randomization tasks. Memory & Cognition, 34(7), 1464–1471. https://doi.org/10.3758/BF03195911.

    Article  Google Scholar 

  • Brown, S. W., Collier, S. A., & Night, J. C. (2013). Timing and executive resources: Dual-task interference patterns between temporal production and shifting, updating, and inhibition tasks. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 947.

    PubMed  Google Scholar 

  • Bryce, D., & Bratzke, D. (2014). Introspective reports of reaction times in dual-tasks reflect experienced difficulty rather than timing of cognitive processes. Consciousness and Cognition, 27, 254–267. https://doi.org/10.1016/j.concog.2014.05.011.

    Article  PubMed  Google Scholar 

  • Bryce, D., & Bratzke, D. (2015). Are introspective reaction times affected by the method of time estimation? A comparison of visual analogue scales and reproduction. Attention Perception & Psychophysics, 77, 978–984.

    Article  Google Scholar 

  • Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831–1840.

    Article  Google Scholar 

  • Buzzell, G. A., Beatty, P. J., Paquette, N. A., Roberts, D. M., & McDonald, C. G. (2017). Error-induced blindness: Error detection leads to impaired sensory processing and lower accuracy at short response–stimulus intervals. Journal of Neuroscience, 37(11), 2895–2903.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Z. G., & Wang, R. (2014). Numerical magnitude affects temporal memories but not time encoding. PLoS One, 9(1), e83159.

  • Castellar, E., Kühn, S., Fias, W., & Notebaert, W. (2010). Outcome expectancy and not accuracy determines posterror slowing: ERP support. Cognitive Affective & Behavioral Neuroscience, 10, 270–278.

    Article  Google Scholar 

  • Chang, A. Y. C., Tzeng, O. J. L., Hung, D. L., & Wu, D. H. (2011). Big time is not always long:Numerical Magnitude automatically affects Time Reproduction. Psychological Science, 22(12), 1567–1573. https://doi.org/10.1177/0956797611418837.

    Article  PubMed  Google Scholar 

  • Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology: Animal Behavior Processes, 3(3), 216.

    CAS  PubMed  Google Scholar 

  • Corallo, G., Sackur, J., Dehaene, S., & Sigman, M. (2008). Limits on introspection: Distorted subjective time during the dual-task bottleneck. Psychological Science, 19(11), 1110–1117.

    Article  PubMed  Google Scholar 

  • Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of Time Estimation. Science, 303(5663), 1506–1508. https://doi.org/10.1126/science.1091573.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudschig, C., & Jentzsch, I. (2009). Speeding before and slowing after errors: Is it all just strategy? Brain Research, 1296, 56–62. https://doi.org/10.1016/j.brainres.2009.08.009.

    Article  CAS  PubMed  Google Scholar 

  • Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert, M., & Wagenmakers, E. J. (2012). Testing theories of post-error slowing. Attention Perception & Psychophysics, 74(2), 454–465. https://doi.org/10.3758/s13414-011-0243-2.

    Article  Google Scholar 

  • Falter, C. M., Elliott, M. A., & Bailey, A. J. (2012). Enhanced visual temporal resolution in autism spectrum disorders. PLoS One, 7(3), e32774.

  • Forster, S. E., & Cho, R. Y. (2014). Context specificity of post-error and post-conflict cognitive control adjustments. PLoS One, 9(3), e90281.

  • Gabry, J., & Goodrich, B. (2020). Bayesian applied regression modeling via Stan. Package rstanarm.

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457–472.

  • Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 52–77. https://doi.org/10.1111/j.1749-6632.1984.tb23417.x.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention Perception & Psychophysics, 72(3), 561–582. https://doi.org/10.3758/APP.72.3.561.

    Article  Google Scholar 

  • Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42(2), 151–160.

    Article  PubMed  Google Scholar 

  • Houtman, F., & Notebaert, W. (2013). Blinded by an error. Cognition, 128(2), 228–236. https://doi.org/10.1016/j.cognition.2013.04.003.

    Article  PubMed  Google Scholar 

  • Javadi, A. H., & Aichelburg, C. (2012). When time and numerosity interfere: The longer the more, and the more the longer. PLoS One, 7(7), e41496.

  • Jeffreys, H. (1961). Theory of Probability. Clarendon Press. https://books.google.com/books?id=AavQAAAAMAAJ.

  • Jentzsch, I., & Dudschig, C. (2009). Short article: Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing. Quarterly Journal of Experimental Psychology, 62(2), 209–218.

    Article  Google Scholar 

  • Jozefowiez, J., Gaudichon, C., Mekkass, F., & Machado, A. (2018). Log versus linear timing in human temporal bisection: A signal detection theory study. Journal of Experimental Psychology: Animal Learning and Cognition, 44(4), 396.

    PubMed  Google Scholar 

  • Karşılar, H., & Balcı, F. (2019). Symbolism overshadows the effect of physical size in supra-second temporal illusions. Attention Perception & Psychophysics, 81(8), 2902–2916. https://doi.org/10.3758/s13414-019-01748-x.

    Article  Google Scholar 

  • Klawohn, J., Endrass, T., Preuss, J., Riesel, A., & Kathmann, N. (2016). Modulation of hyperactive error signals in obsessive–compulsive disorder by dual-task demands. Journal of Abnormal Psychology, 125(2), 292.

    Article  PubMed  Google Scholar 

  • Kopec, C. D., & Brody, C. D. (2010). Human performance on the temporal bisection task. Brain and Cognition, 74(3), 262–272. https://doi.org/10.1016/j.bandc.2010.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573.

    Article  PubMed  Google Scholar 

  • Kruschke, J. K. (2018). Rejecting or accepting parameter values in bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270–280.

    Article  Google Scholar 

  • Lavro, D., Ben-Shachar, M. S., Saville, C. W., Klein, C., & Berger, A. (2018). Testing the bottleneck account for post-error slowing beyond the post-error response. Biological Psychology, 138, 81–90.

    Article  PubMed  Google Scholar 

  • Lavro, D., & Berger, A. (2015). The cost of errors: Perceived error detection in dual-task conditions. Acta Psychologica, 158, 1–7. https://doi.org/10.1016/j.actpsy.2015.03.006.

    Article  PubMed  Google Scholar 

  • Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behavior Research Methods, 49, 513–537.

    Article  PubMed  Google Scholar 

  • Lewis, C. (2021). Examining post-error behavior in a Complex Multitasking Environment. Arizona State University].

  • Lewis, C. M., & Gutzwiller, R. S. (2023). Examining post-error performance in a complex multitasking environment. Cognitive Research: Principles and Implications, 8(1), 65. https://doi.org/10.1186/s41235-023-00512-y.

    Article  PubMed  Google Scholar 

  • Mafi, F., Tang, M. F., Afarinesh, M. R., Ghasemian, S., Sheibani, V., & Arabzadeh, E. (2023). Temporal order judgment of multisensory stimuli in rat and human. Frontiers in Behavioral Neuroscience, 16, 1070452.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier, M. E., Ernst, B., & Steinhauser, M. (2019). Error-related pupil dilation is sensitive to the evaluation of different error types. Biological Psychology, 141, 25–34. https://doi.org/10.1016/j.biopsycho.2018.12.013.

    Article  PubMed  Google Scholar 

  • Maier, M. E., & Steinhauser, M. (2016). Error significance but not error expectancy predicts error-related negativities for different error types. Behavioural Brain Research, SreeTestContent1, 259–267.

    Article  Google Scholar 

  • Malapani, C., & Fairhurst, S. (2002). Scalar timing in animals and humans. Learning and Motivation, 33(1), 156–176. https://doi.org/10.1006/lmot.2001.1105.

    Article  Google Scholar 

  • Ma, Q., Yang, Z., & Zhang, Z. (2012). The modulation of implicit magnitude on time estimates.

  • Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142(8), 865.

    Article  PubMed  Google Scholar 

  • Matthews, W. J., Stewart, N., & Wearden, J. H. (2011). Stimulus intensity and the perception of duration. Journal of Experimental Psychology: Human Perception and Performance, 37(1), 303.

    PubMed  Google Scholar 

  • Morey, R. D., Rouder, J. N., Jamil, T., & Morey, M. R. D. (2015). Package ‘bayesfactor’. https://www.cran/r-projectorg/web/packages/BayesFactor/BayesFactor.pdf i (accessed 1006 15)

  • Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111(2), 275–279. https://doi.org/10.1016/j.cognition.2009.02.002.

    Article  PubMed  Google Scholar 

  • Notebaert, W., & Verguts, T. (2011). Conflict and error adaptation in the Simon task. Acta Psychologica, 136(2), 212–216. https://doi.org/10.1016/j.actpsy.2010.05.006.

    Article  PubMed  Google Scholar 

  • Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., Chillemi, G., & Caltagirone, C. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438(3), 308–311. https://doi.org/10.1016/j.neulet.2008.04.051.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, B. D., Gandhi, S., Aurbach, E. L., Williams, N., Williams, M., Wassef, A., & Eagleman, D. M. (2013). Lengthened temporal integration in schizophrenia. Neuropsychologia, 51(2), 372–376. https://doi.org/10.1016/j.neuropsychologia.2012.11.008.

    Article  PubMed  Google Scholar 

  • Penney, T. B., Cheng, X., Vatakis, A., Balcı, F., Di Luca, M., & Correa, Á. (2018). Timing and Time Perception: Procedures, Measures, & Applications. In Duration Bisection: A User’s Guide (pp. 98–127). Brill. https://doi.org/10.1163/9789004280205_006.

  • Peters, G. (2008). Markov Chain Monte Carlo: stochastic simulation for Bayesian inference (2nd edn). Dani Gamerman and Hedibert F. Lopes, Chapman & Hall/CRC, Boca Raton, FL, 2006. No. of pages: xvii + 323. Price: $69.95. ISBN10: 1-58488‐587‐4, ISBN13: 978‐1‐58488‐587‐0. In: Wiley Online Library.

  • Pezzetta, R., Nicolardi, V., Tidoni, E., & Aglioti, S. M. (2018). Error, rather than its probability, elicits specific electrocortical signatures: A combined EEG-immersive virtual reality study of action observation. Journal of Neurophysiology, 120(3), 1107–1118.

    Article  PubMed  Google Scholar 

  • Prins, N., & Kingdom, F. A. A. (2018). Applying the Model-Comparison Approach to Test Specific Research hypotheses in Psychophysical Research using the Palamedes Toolbox [Methods]. Frontiers in Psychology, 9, https://doi.org/10.3389/fpsyg.2018.01250.

  • Rammsayer, T. H., & Verner, M. (2016). Evidence for different processes involved in the effects of nontemporal stimulus size and numerical digit value on duration judgments. Journal of Vision, 16(7), 13–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision, 2(4), 237.

    Article  Google Scholar 

  • Ruthruff, E., & Pashler, H. (2010). Mental timing and the central attentional bottleneck. Attention and time, 123–135.

  • Schuch, S., Dignath, D., Steinhauser, M., & Janczyk, M. (2019). Monitoring and control in multitasking. Psychonomic Bulletin & Review, 26(1), 222–240. https://doi.org/10.3758/s13423-018-1512-z.

    Article  Google Scholar 

  • Senderecka, M., & Szewczyk, J. (2021). Human brain responses associated with subjective evaluation of error significance are sensitive to error inevitability.

  • Shukla, A., & Bapi, R. S. (2021). Numerical Magnitude affects accuracy but not Precision of temporal judgments [Brief Research Report]. Frontiers in Human Neuroscience, 14, https://doi.org/10.3389/fnhum.2020.629702.

  • Steinhauser, M., Ernst, B., & Ibald, K. W. (2017). Isolating component processes of posterror slowing with the psychological refractory period paradigm. Journal of Experimental Psychology: Learning Memory and Cognition, 43(4), 653.

    PubMed  Google Scholar 

  • Steinhauser, M., & Hübner, R. (2006). Response-based strengthening in task shifting: Evidence from shift effects produced by errors. Journal of Experimental Psychology: Human Perception and Performance, 32(3), 517.

    PubMed  Google Scholar 

  • Steinhauser, R., & Steinhauser, M. (2021). Adaptive rescheduling of error monitoring in multitasking. NeuroImage, 232, 117888. https://doi.org/10.1016/j.neuroimage.2021.117888.

  • Stürmer, B. (2011). Reward and punishment effects on Error Processing and Conflict Control [Original Research]. Frontiers in Psychology 2. https://doi.org/10.3389/fpsyg.2011.00335.

    Article  Google Scholar 

  • Sucala, M., Scheckner, B., & David, D. (2011). Psychological time: interval length judgments and subjective passage of time judgments. Current psychology letters. Behaviour, brain & cognition, 26(2, 2010).

  • Tipples, J. (2015). Rapid temporal accumulation in spider fear: Evidence from hierarchical drift diffusion modelling. Emotion, 15(6), 742.

    Article  PubMed  Google Scholar 

  • Tipples, J., Lupton, M., & George, D. (2021). Speeding up Time: Hierarchical bayesian drift diffusion modelling evidence for accelerating temporal Accumulation. Timing & Time Perception, 9(4), 393–416.

    Article  Google Scholar 

  • Ullsperger, M. (2016). Errors and surprise in patients with focal brain lesions. Clinical Neurophysiology, 127(3), e20. https://doi.org/10.1016/j.clinph.2015.11.052.

    Article  Google Scholar 

  • van den Bergh, D., Wagenmakers, E. J., & Aust, F. (2023). Bayesian repeated-measures analysis of Variance: An updated methodology implemented in JASP. Advances in Methods and Practices in Psychological Science, 6(2), 25152459231168024.

    Article  Google Scholar 

  • Van der Borght, L., Braem, S., Stevens, M., & Notebaert, W. (2016a). Keep calm and be patient: The influence of anxiety and time on post-error adaptations. Acta Psychologica, 164, 34–38. https://doi.org/10.1016/j.actpsy.2015.12.007.

    Article  PubMed  Google Scholar 

  • Van der Borght, L., Schevernels, H., Burle, B., & Notebaert, W. (2016b). Errors disrupt subsequent early attentional processes. PLoS One, 11(4), e0151843.

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. https://doi.org/10.1016/j.tics.2003.09.002.

    Article  PubMed  Google Scholar 

  • Wang, L., Tang, D., Zhao, Y., Hitchman, G., Wu, S., Tan, J., & Chen, A. (2015). Disentangling the impacts of outcome valence and outcome frequency on the post-error slowing. Scientific Reports, 5(1), 8708. https://doi.org/10.1038/srep08708.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wearden, J. H. (1991). Do humans possess an internal clock with scalar timing properties? Learning and Motivation, 22(1), 59–83. https://doi.org/10.1016/0023-9690(91)90017-3.

    Article  Google Scholar 

  • Wehrman, J. J., Kaplan, D. M., & Sowman, P. F. (2020). Local context effects in the magnitude-duration illusion: Size but not numerical value sequentially alters perceived duration. Acta Psychologica, 204, 103016. https://doi.org/10.1016/j.actpsy.2020.103016.

    Article  PubMed  Google Scholar 

  • Weißbecker-Klaus, X., Ullsperger, P., Freude, G., & Schapkin, S. A. (2016). Impaired error processing and semantic processing during multitasking. Journal of Psychophysiology.

  • Wessel, J. R. (2018). An adaptive orienting theory of error processing. Psychophysiology, 55(3), e13041.

    Article  Google Scholar 

  • Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: Common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 7528–7537.

    Article  CAS  PubMed  Google Scholar 

  • Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 14.

  • Wiener, M., Parikh, A., Krakow, A., & Coslett, H. B. (2018). An intrinsic role of beta oscillations in memory for time estimation. Scientific Reports, 8(1), 7992.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zakay, D., & Block, R. A. (1996). The role of attention in time estimation processes. In M. A. Pastor & J. Artieda (Eds.), Advances in Psychology (Vol. 115, pp. 143–164). North-Holland. https://doi.org/10.1016/S0166-4115(96)80057-4.

Download references

Funding

This work was supported by a research grant (400,001,150) from Kerman University of Medical Sciences.The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

S.G. designed the study. M.R., F.M. and P.H. collected and analyzed data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Sadegh Ghasemian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiezadeh, M., Tashk, A., Mafi, F. et al. Error modulates categorization of subsecond durations in multitasking contexts. Psychological Research (2024). https://doi.org/10.1007/s00426-024-01945-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00426-024-01945-w

Navigation