Skip to main content
Log in

An attentional blink in the absence of spatial attention: a cost of awareness?

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The attentional blink refers to the finding that when two visual targets appear within 200–500 ms, observers often miss the second target. In three experiments, we disentangle the roles of spatial attention to and conscious report of the first event in eliciting this cost. We show that allocating spatial attention to the first event is not necessary for a blink to occur: the full temporal pattern of the blink arises when the first event is consciously detected, despite the fact that it is not spatially attended, whereas no cost is observed when the first event is missed. We then show that spatial attention is also not sufficient for eliciting a blink, though it can deepen the blink when accompanied by conscious detection. These results demonstrate that there is no cost associated with the initiation of an attentional episode, whereas explicit conscious detection comes at a price. These findings demonstrate the temporal flexibility of attention and underscore the potential role of subjective awareness in understanding processing limitations, although this role may be contingent on the encoding in working memory necessary for conscious report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Theeuwes and colleagues have claimed that salient irrelevant color cues mandatorily capture attention (e.g., Theeuwes, Atchley & Kramer, 2000; see Theeuwes, 2010, for a review). However, support for this claim comes almost exclusively from experiments in which the target had a unique feature and could be found by monitoring the displays for a featural discontinuity (i.e., using a search strategy known as the “singleton-detection mode”, Bacon & Egeth, 1994). Evidence for attentional capture by a cue that has a salient feature outside the observer’s attentional state is scarce and has been mostly reported for onset cues (e.g., Folk & Remington, 2015).

  2. This same-location cost has been reported in several previous studies (e.g., Anderson & Folk, 2012; Becker, Folk, & Remington, 2013, Experiment 3; Belopolsky et al., 2010; Carmel & Lamy, 2014; 2015; Eimer, Kiss, Press, & Sauter, 2009; Folk & Remington, 2008; Lamy et al., 2015; Lamy, Leber & Egeth, 2004; Schönhammer & Kerzel, 2013). Importantly, although the mechanisms underlying this same-location cost are debated, Carmel and Lamy (2014; 2015) demonstrated that this cost is unrelated to attention and is contingent on conscious perception of the cue.

  3. Note that these findings do not contradict the widely accepted idea that attention is necessary for conscious perception (e.g., Dehaene, Changeux, Naccache, Sackur & Sergent, 2006 but see Tsuchiya & Koch, 2016). Indeed, previous research has shown that a stimulus that must be responded to can be consciously detected even if it benefits only from very little—distributed—spatial attention (e.g., Mack & Rock, 1998; Fei-Fei et al., 2005). In Lamy et al.’s (2015) study, participants were asked to rate the irrelevant-color cue’s visibility—a task that required no more than detecting a color singleton, and therefore, did not require spatial attention. By contrast, relevant-color cues captured attention, yet were sometimes missed. This finding is consistent with previous reports showing that spatial attention is not sufficient for conscious perception (e.g., Kentridge, Nijboer & Heywood, 2008).

  4. The reason why the cue color in one group did not exactly match the target color in the other group is that different factors constrained the choice of the target and cue colors. On the one hand, the target color had to be discriminable enough for baseline performance to remain relatively high, as is characteristic of previous AB studies. On the other hand, the cue color had to be faint enough for participants to be entirely unaware of its presence (and rate its visibility as null) on a sizeable proportion of the trials. Note that the latter constraint differed in this experiment relative to the previous one, in which CFS was used: in Experiment 3, the cue had to be strong enough to overcome suppression on enough trials to elicit above 0 visibility ratings.

  5. Previous studies reported the incidental finding that RTs to a target are slower when this target follows a prime that is consciously perceived relative to when this prime escapes awareness (e.g., Lamy et al., 2015; Peremen & Lamy, 2014a, b; see also Van den Bussche et al., 2013). As the time interval between the prime and target in these studies typically fell within the range of the blink period, the observed impairment is likely to reflect, at least in part, the same cost of awareness as reported in the present study.

  6. McKay and Juola (2007) showed that spatial and temporal cues are associated with independent cueing benefits. However, this finding only entails that observers can take advantage of two separate sources of knowledge and that these have additive effects on performance. McKay and Juola’s (2007) finding does not entail that spatial selection and temporal attentional selection per se, operate independently of each other.

References

  • Akyürek, E. G., Eshuis, S. A., Nieuwenstein, M. R., Saija, J. D., Başkent, D., & Hommel, B. (2012). Temporal target integration underlies performance at lag 1 in the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1448.

    PubMed  Google Scholar 

  • Akyürek, E. G., & Hommel, B. (2005). Target integration and the attentional blink. Acta Psychologica, 119(3), 305–314.

    Article  PubMed  Google Scholar 

  • Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention, Perception, and Psychophysics, 74(6), 1183–1198.

    Article  Google Scholar 

  • Andrade, J. (2001). The contribution of working memory to conscious experience. Working Memory in Perspective, 60–78.

  • Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 937.

    PubMed  Google Scholar 

  • Baars, B. J. (1997). Some essential differences between consciousness and attention, perception, and working memory. Consciousness and cognition, 6(2), 363–371.

    Article  PubMed  Google Scholar 

  • Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in cognitive sciences, 7(4), 166–172.

    Article  PubMed  Google Scholar 

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception and Psychophysics, 55(5), 485–496.

    Article  PubMed  Google Scholar 

  • Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional capture does not depend on feature similarity, but on target-nontarget relations. Psychological Science, 24(5), 634–647.

    Article  PubMed  Google Scholar 

  • Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception, and Psychophysics, 72(2), 326–341.

    Article  Google Scholar 

  • Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model of temporal attention and working memory. Psychological Review, 114(1), 38.

    Article  PubMed  Google Scholar 

  • Broadbent, D. E., & Broadbent, M. H. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception and Psychophysics, 42(2), 105–113.

    Article  PubMed  Google Scholar 

  • Carmel, T., & Lamy, D. (2014). The same-location cost is unrelated to attentional settings: An object-updating account. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1465.

    PubMed  Google Scholar 

  • Carmel, T., & Lamy, D. (2015). Towards a resolution of the attentional-capture debate. Journal of Experimental Psychology: Human Perception and Performance, 41(6), 1772.

    PubMed  Google Scholar 

  • Chen, P., & Mordkoff, J. T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15(6), 637–646.

    Article  Google Scholar 

  • Chua, F. K. (2015). A moving overlay shrinks the attentional blink. Attention, Perception, and Psychophysics, 77(1), 173–189.

    Article  Google Scholar 

  • Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 109.

    PubMed  Google Scholar 

  • Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211.

    Article  PubMed  Google Scholar 

  • Dell’Acqua, R., Pierre, J., Pascali, A., & Pluchino, P. (2007). Short-term consolidation of individual identities leads to Lag-1 sparing. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 593.

    PubMed  Google Scholar 

  • Di Lollo, V., Kawahara, J. I., Ghorashi, S. S., & Enns, J. T. (2005). The attentional blink: Resource depletion or temporary loss of control? Psychological Research, 69(3), 191–200.

    Article  PubMed  Google Scholar 

  • Dux, P. E., Asplund, C. L., & Marois, R. (2008). An attentional blink for sequentially presented targets: Evidence in favor of resource depletion accounts. Psychonomic Bulletin and Review, 15(4), 809–813.

    Article  PubMed  Google Scholar 

  • Dux, P. E., & Harris, I. M. (2007). On the failure of distractor inhibition in the attentional blink. Psychonomic Bulletin and Review, 14(4), 723–728.

    Article  PubMed  Google Scholar 

  • Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, and Psychophysics, 71(8), 1683–1700.

    Article  Google Scholar 

  • Eimer, M., Kiss, M., Press, C., & Sauter, D. (2009). The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1316.

    PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    Article  PubMed  Google Scholar 

  • Fei-Fei, L., VanRullen, R., Koch, C., & Perona, P. (2005). Why does natural scene categorization require little attention? Exploring attentional requirements for natural and synthetic stimuli. Visual Cognition, 12(6), 893–924.

    Article  Google Scholar 

  • Folk, C. L., Ester, E. F., & Troemel, K. (2009). How to keep attention from straying: Get engaged! Psychonomic Bulletin and Review, 16(1), 127–132.

    Article  PubMed  Google Scholar 

  • Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception and Psychophysics, 64(5), 741–753.

    Article  PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. Journal of Experimental Psychology: Human perception and performance, 24(3), 847.

    PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16(2–3), 215–231.

    Article  Google Scholar 

  • Folk, C. L., & Remington, R. W. (2015). Unexpected abrupt onsets can override a top-down set for color. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 1153.

    PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030.

    PubMed  Google Scholar 

  • Gaspelin, N., Ruthruff, E., & Lien, M. C. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1104.

    PubMed  Google Scholar 

  • Harris, I. M., Benito, C. T., & Dux, P. E. (2010). Priming from distractors in rapid serial visual presentation is modulated by image properties and attention. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1595.

    PubMed  Google Scholar 

  • Holländer, A., Corballis, M. C., & Hamm, J. P. (2005). Visual-field asymmetry in dual-stream RSVP. Neuropsychologia, 43(1), 35–40.

    Article  PubMed  Google Scholar 

  • Hommel, B., & Akyürek, E. G. (2005). Lag-1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode. The Quarterly Journal of Experimental Psychology Section A, 58(8), 1415–1433.

    Article  Google Scholar 

  • Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffreys, H. (1998). The theory of probability. OUP, Oxford.

    Google Scholar 

  • Jefferies, L. N., Enns, J. T., & Di Lollo, V. (2014). The flexible focus: Whether spatial attention is unitary or divided depends on observer goals. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 465.

    PubMed  Google Scholar 

  • Jolicoeur, P. (1999). Concurrent response-selection demands modulate the attentional blink. Journal of Experimental psychology: Human perception and performance, 25(4), 1097.

    Google Scholar 

  • Jolicœur, P., & Dell’Acqua, R. (1999). Attentional and structural constraints on visual encoding. Psychological Research Psychologische Forschung, 62(2–3), 154–164.

    Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.

    Article  Google Scholar 

  • Kawahara, J. I., Kumada, T., & Di Lollo, V. (2006). The attentional blink is governed by a temporary loss of control. Psychonomic Bulletin and Review, 13(5), 886–890.

    Article  PubMed  Google Scholar 

  • Kentridge, R. W., Nijboer, T. C., & Heywood, C. A. (2008). Attended but unseen: Visual attention is not sufficient for visual awareness. Neuropsychologia, 46(3), 864–869.

    Article  PubMed  Google Scholar 

  • Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240–249.

    Article  PubMed  Google Scholar 

  • Koch, C., & Tsuchiya, N. (2007). Attention and consciousness: two distinct brain processes. Trends in Cognitive Sciences, 11(1), 16–22.

    Article  PubMed  Google Scholar 

  • Lamy, D. (2005). Temporal expectations modulate attentional capture. Psychonomic Bulletin and Review, 12(6), 1112–1119.

    Article  PubMed  Google Scholar 

  • Lamme, V. A. (2006). Towards a true neural stance on consciousness. Trends in cognitive sciences, 10(11), 494–501.

    Article  PubMed  Google Scholar 

  • Lamy, D., Alon, L., Carmel, T., & Shalev, N. (2015). The role of conscious perception in attentional capture and object-file updating. Psychological Science, 26, 48–57. https://doi.org/10.1177/0956797614556777.

    Article  PubMed  Google Scholar 

  • Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of task relevance and stimulus-driven salience in feature-search mode. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1019–1031.

    PubMed  Google Scholar 

  • Leblanc, É, & Jolicoeur, P. (2005). The time course of the contingent spatial blink. Canadian Journal of Experimental Psychology, 59(2), 124.

    Article  PubMed  Google Scholar 

  • Livesey, E. J., & Harris, I. M. (2011). Target sparing effects in the attentional blink depend on type of stimulus. Attention, Perception, and Psychophysics, 73(7), 2104–2123.

    Article  Google Scholar 

  • Mack, A., & Rock, I. (1998). Inattentional blindness (Vol. 33). Cambridge, MA: MIT press.

    Book  Google Scholar 

  • MacKay, A., & Juola, J. F. (2007). Are spatial and temporal attention independent? Perception and Psychophysics, 69(6), 972–979.

    Article  Google Scholar 

  • MacLean, M. H., & Arnell, K. M. (2012). A conceptual and methodological framework for measuring and modulating the attentional blink. Attention, Perception, and Psychophysics, 74(6), 1080–1097.

    Article  Google Scholar 

  • Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 947–957.

    Article  PubMed  Google Scholar 

  • Meijs, E. L., Slagter, H. A., de Lange, F. P., & van Gaal, S. (2018). Dynamic interactions between top-down expectations and conscious awareness. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.1952-17.2017.

    Article  PubMed  Google Scholar 

  • McCormick, P. A. (1997). Orienting attention without awareness. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 168.

    PubMed  Google Scholar 

  • Most, S. B., Scholl, B. J., Clifford, E. R., & Simons, D. J. (2005). What you see is what you set: sustained inattentional blindness and the capture of awareness. Psychological Review, 112(1), 217.

    Article  PubMed  Google Scholar 

  • Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299–309.

    Article  PubMed  Google Scholar 

  • Nieuwenstein, M. R., Chun, M. M., van der Lubbe, R. H., & Hooge, I. T. (2005). Delayed attentional engagement in the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1463. https://doi.org/10.1007/s00426-018-1100-x.

    Article  PubMed  Google Scholar 

  • Nieuwenhuis, S., Gilzenrat, M. S., Holmes, B. D., & Cohen, J. D. (2005). The role of the locus coeruleus in mediating the attentional blink: a neurocomputational theory. Journal of Experimental Psychology: General, 134(3), 291.

    Article  Google Scholar 

  • Nieuwenstein, M., Van der Burg, E., Theeuwes, J., Wyble, B., & Potter, M. (2009). Temporal constraints on conscious vision: On the ubiquitous nature of the attentional blink. Journal of Vision, 9(9), 18–18.

    Article  PubMed  Google Scholar 

  • Nieuwenstein, M. R., & Potter, M. C. (2006). Temporal limits of selection and memory encoding a comparison of whole versus partial report in rapid serial visual presentation. Psychological Science, 17(6), 471–475.

    Article  PubMed  Google Scholar 

  • Olivers, C. N., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological review, 115(4), 836.

    Article  PubMed  Google Scholar 

  • Olivers, C. N., Van Der Stigchel, S., & Hulleman, J. (2007). Spreading the sparing: Against a limited-capacity account of the attentional blink. Psychological Research, 71(2), 126–139.

    Article  PubMed  Google Scholar 

  • Oriet, C., Pandey, M., & Kawahara, J. I. (2017). Attention capture without awareness in a non-spatial selection task. Consciousness and Cognition, 48, 117–128.

    Article  PubMed  Google Scholar 

  • Peremen, Z., & Lamy, D. (2014). Do conscious perception and unconscious processing rely on independent mechanisms? A meta-contrast study. Consciousness and Cognition, 24, 22–32.

    Article  PubMed  Google Scholar 

  • Peremen, Z., & Lamy, D. (2015). Comparing unconscious processing during continuous flash suppression and meta-contrast masking just under the limen of consciousness. Invisible, but how? The depth of unconscious processing as inferred from different suppression techniques. 109.

  • Ramsøy, T. Z., & Overgaard, M. (2004). Introspection and subliminal perception. Phenomenology and the Cognitive Sciences, 3(1), 1–23.

    Article  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18(3), 849.

    Article  PubMed  Google Scholar 

  • Shih, S. I. (2008). The attention cascade model and attentional blink. Cognitive psychology, 56(3), 210–236.

    Article  PubMed  Google Scholar 

  • Soto, D., & Silvanto, J. (2014). Reappraising the relationship between working memory and conscious awareness. Trends in Cognitive Sciences, 18(10), 520–525.

    Article  PubMed  Google Scholar 

  • Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Attention, Perception, & Psychophysics, 64(5), 754–763.

    Article  Google Scholar 

  • Schönhammer, J. G., & Kerzel, D. (2013). Some effects of non-predictive cues on accuracy are mediated by feature-based attention. Journal of Vision, 13(9), 76.

    Article  Google Scholar 

  • Śmigasiewicz, K., Shalgi, S., Hsieh, S., Möller, F., Jaffe, S., Chang, C. C., & Verleger, R. (2010). Left visual-field advantage in the dual-stream RSVP task and reading-direction: A study in three nations. Neuropsychologia, 48(10), 2852–2860.

    Article  PubMed  Google Scholar 

  • Soto, D., Mäntylä, T., & Silvanto, J. (2011). Working memory without consciousness. Current Biology, 21(22), R912–R913.

    Article  PubMed  Google Scholar 

  • Stein, T., Kaiser, D., & Hesselmann, G. (2016). Can working memory be non-conscious? Neuroscience of Consciousness, 2016(1), niv011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135(2), 77–99.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. Control of cognitive processes: Attention and Performance XVIII, 105–124.

  • Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096–1101.

    Article  PubMed  Google Scholar 

  • Van den Bussche, E., Vermeiren, A., Desender, K., Gevers, W., Hughes, G., Verguts, T., & Reynvoet, B. (2013). Disentangling conscious and unconscious processing: a subjective trial-based assessment approach. Frontiers in Human Neuroscience, 7.

  • Velichkovsky, B. B. (2017). Consciousness and working memory: Current trends and research perspectives. Consciousness and Cognition, 55, 35–45.

    Article  PubMed  Google Scholar 

  • Verleger, R., Möller, F., Kuniecki, M., Śmigasiewicz, K., Groppa, S., & Siebner, H. R. (2010). The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS. Experimental Brain Research, 203(2), 355–365.

    Article  PubMed  Google Scholar 

  • Visser, T. A., Bischof, W. F., & Di Lollo, V. (1999). Attentional switching in spatial and nonspatial domains: Evidence from the attentional blink. Psychological Bulletin, 125(4), 458.

    Article  Google Scholar 

  • Visser, T. A., Zuvic, S. M., Bischof, W. F., & Di Lollo, V. (1999). The attentional blink with targets in different spatial locations. Psychonomic Bulletin and Review, 6(3), 432–436.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a post-perceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1656.

    PubMed  Google Scholar 

  • Weichselgartner, E., & Sperling, G. (1987). Dynamics of automatic and controlled visual attention. Science, 238(4828), 778–780.

    Article  PubMed  Google Scholar 

  • Wyble, B., Bowman, H., & Potter, M. C. (2009). Categorically defined targets trigger spatiotemporal visual attention. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 324.

    PubMed  Google Scholar 

  • Wyble, B., Folk, C., & Potter, M. C. (2013). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 861.

    PubMed  Google Scholar 

  • Wyble, B., Potter, M. C., Bowman, H., & Nieuwenstein, M. (2011). Attentional episodes in visual perception. Journal of Experimental Psychology: General, 140(3), 488.

    Article  Google Scholar 

  • Zivony, A., & Lamy, D. (2014). Attentional engagement is not sufficient to prevent spatial capture. Attention, Perception, and Psychophysics, 76(1), 19–31.

    Article  Google Scholar 

  • Zivony, A., & Lamy, D. (2016). Attentional Capture and Engagement During the Attentional Blink: A “Camera” Metaphor of Attention.

Download references

Acknowledgements

Support was provided by the Israel Science Foundation (ISF) Grant nos. 1475/12 and 1286/16 to Dominique Lamy. We thank Guido Hesselmann for very useful discussions and Olga Nevenchannaya for her precious help in running the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Alef Ophir.

Additional information

Public interest statement

Our cognitive system is severely limited in its ability to process events that appear in rapid succession. To understand how we cope with such limitation in our highly dynamic daily environment, it is important to identify the main limiting factor. Here, we demonstrate that we can allocate our spatial attention to successive events with no apparent temporal limitations, and that when explicitly reported, conscious experience constitutes a bottleneck: explicit detection of an event entails a cost at processing a subsequent event.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alef Ophir, E., Sherman, E. & Lamy, D. An attentional blink in the absence of spatial attention: a cost of awareness?. Psychological Research 84, 1039–1055 (2020). https://doi.org/10.1007/s00426-018-1100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1100-x

Navigation