Skip to main content
Log in

A meta-analysis of contingent-capture effects

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The present meta-analyses investigated the widely used contingent-capture protocol. Contingent-capture theory postulates that only top-down matching stimuli capture attention. Evidence comes from the contingent-capture protocol, in which participants search for a predefined target stimulus preceded by a spatial cue. The cue is typically uninformative of the target’s position but either presented at target position (valid condition) or away from the target (invalid condition). The common finding is that seemingly only top-down matching cues capture attention as shown by a selective cueing effect (faster responses in valid than invalid conditions) for cues with a feature similar to the searched-for target only, but not for cues without target-similar feature. The origin of this “contingent-capture effect” is, however, debated. One alternative explanation is that intertrial priming—the priming of attention capture by the cue in a given trial by attending to a feature-similar target in the preceding trial—mediates the contingent-capture effect. Alternatively, the rapid-disengagement account argues that all salient stimuli capture attention initially, but that the disengagement from non-matching cues is rapid. The present meta-analyses shed light on this debate by (a) identifying moderators of the size of reported contingent-capture effects (64 experiments) and (b) analyzing pure (blocked) versus mixed presentation of different targets as well as summarizing results of published intertrial priming studies (12 experiments) in the contingent-capture protocol. We found target-singleton versus non-singleton status and pure versus mixed presentation of different targets to be reliable moderators. Furthermore, results indicated the presence of publication bias. Otherwise, the contingent-capture theory was supported, but we discuss additional factors that must be taken into account for a full account of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. With longer cue–target intervals exceeding about 300 ms, cueing effects often revert (for an overview, see Klein, 2000). However, regarding the contingent-capture effect, this reversion is typically only found with top-down matching abrupt onset cues and with non-matching cues but not with top-down matching color cues (Gibson & Amelio, 2000).

  2. It should be noted here that the three-way interactions between cue color, target color, and validity (or cue location) yielded the same result in both Experiments 2 (N = 24) and 3 (N = 16): F(1, 22) = 34.33 of Folk and Remington (1998), an impossible result in the second case (see degrees of freedom). Although visual inspection of the figures does not imply an overly different result, the second F value appears to be a copy-and-paste error.

  3. An alternative would have been to find a typical correlation between RTs of the conditions and then use this correlation to correct the effect size for each experiment. This alternative was not chosen for two reasons: first, the imputed correlation would again have been an estimate and hence probably not correct for each experiment; and, second, order of effect sizes from small to large would have remained unaffected. Therefore, a meta-analysis based on imputed correlations would have yielded relatively similar results.

  4. For the interested reader, the interactions concerning the influence of intertrial priming on contingent-capture effects are easy to spot in the “Results” sections of all but one study, the study by Eimer and Kiss (2010). In Eimer and Kiss (2010), the interactions are reported in the “Discussion” sections on p. 956 (Experiment 1) and p. 960 (Experiment 2), respectively.

  5. Lamy et al. labeled the cues distractors, arguing that they do not indicate the correct target position and, hence, are a distraction.

References

*Studies included in the meta-analysis.

  • *Adamo, M., Pun, C., & Ferber, S. (2010). Multiple attentional control settings influence late attentional selection but do not provide an early attentional filter. Cognitive Neuroscience, 1, 102–110.

    Article  PubMed  Google Scholar 

  • *Adamo, M., Pun, C., Pratt, J., & Ferber, S. (2008). Your divided attention, please! The maintenance of multiple attentional control sets over distinct regions in space. Cognition, 107, 295–303.

    Article  PubMed  Google Scholar 

  • *Adamo, M., Wozny, S., Pratt, J., & Ferber, S. (2010). Parallel, independent attentional control settings for colors and shapes. Attention, Perception, & Psychophysics, 72, 1730–1735.

    Article  Google Scholar 

  • *Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention, Perception, & Psychophysics, 74, 1183–1198.

    Article  Google Scholar 

  • Ansorge, U., & Becker, S. I. (2012). Automatic priming of attentional control by relevant colors. Attention, Perception, & Psychophysics, 74, 83–104.

    Article  Google Scholar 

  • *Ansorge, U., & Becker, S. I. (2014). Contingent capture in cueing: The role of color search templates and cue-target color relations. Psychological Research Psychologische Forschung, 78, 209–221.

    Article  PubMed  Google Scholar 

  • *Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29, 937–948.

    PubMed  Google Scholar 

  • *Ansorge, U., & Heumann, M. (2004). Peripheral cuing by abrupt-onset cues: The influence of color in S–R corresponding conditions. Acta Psychologica, 116, 115–143.

    Article  PubMed  Google Scholar 

  • Ansorge, U., & Horstmann, G. (2007). Preemptive control of attentional capture by colour: Evidence from trial-by-trial analyses and orderings of onsets of capture effects in reaction time distributions. Quarterly Journal of Experimental Psychology, 60, 952–975.

    Article  Google Scholar 

  • Ansorge, U., Kiss, M., & Eimer, M. (2009). Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychonomic Bulletin & Review, 16, 648–653.

    Article  Google Scholar 

  • *Ansorge, U., Kiss, M., Worschech, F., & Eimer, M. (2011). The initial stage of visual selection is controlled by top-down task set: New ERP evidence. Attention, Perception, & Psychophysics, 73, 113–122.

    Article  Google Scholar 

  • Ansorge, U., Priess, H.-W., & Kerzel, D. (2013). Effects of relevant and irrelevant color singletons on inhibition of return and attentional capture. Attention, Perception, & Psychophysics, 75, 1687–1702.

    Article  Google Scholar 

  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496.

    Article  Google Scholar 

  • Becker, S. I. (2010). The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–265.

    Article  Google Scholar 

  • *Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–1476.

    PubMed  Google Scholar 

  • *Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional capture does not depend on feature similarity, but on target-nontarget relations. Psychological Science, 24, 634–647.

    Article  PubMed  Google Scholar 

  • Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088–1101.

    Article  PubMed  Google Scholar 

  • *Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception, & Psychophysics, 72, 326–341.

    Article  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: Wiley.

    Book  Google Scholar 

  • Borenstein, M., Higgins, J., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8, 5–18.

    Article  PubMed  Google Scholar 

  • Braver, S. L., Thoemmes, F. J., & Rosenthal, R. (2014). Continuously cumulating meta-analysis and replicability. Perspectives on Psychological Science, 9, 333–343.

    Article  PubMed  Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547.

    Article  PubMed  Google Scholar 

  • Burnham, B. R. (2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14, 392–422.

    Article  Google Scholar 

  • *Burnham, B. R., Harris, A. M., & Suda, M. T. (2011). Relationship between working memory capacity and contingent involuntary orienting. Visual Cognition, 19, 983–1002.

    Article  Google Scholar 

  • *Carmel, T., & Lamy, D. (2014). The same-location cost is unrelated to attentional settings: An object-updating account. Journal of Experimental Psychology: Human Perception and Performance, 40, 1465–1478.

    PubMed  Google Scholar 

  • *Carmel, T., & Lamy, D. (2015). Towards a resolution of the attentional-capture debate. Journal of Experimental Psychology: Human Perception and Performance, 41, 1772–1782.

    PubMed  Google Scholar 

  • *Chen, P., & Mordkoff, J. T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15, 637–646.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Routledge Academic.

    Google Scholar 

  • Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25, 7–29.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  PubMed  Google Scholar 

  • Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463.

    Article  PubMed  Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629–634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 20, 1423–1433.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Eimer, M., & Kiss, M. (2010). Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence. Attention, Perception, & Psychophysics, 72, 951–962.

    Article  Google Scholar 

  • Fecteau, J. H. (2007). Priming of pop-out depends on the current goals of observers. Journal of Vision, 7(6), 1.

    Article  PubMed  Google Scholar 

  • *Folk, C. L., & Anderson, B. A. (2010). Target-uncertainty effects in attentional capture: Color-singleton set or multiple attentional control settings? Psychonomic Bulletin & Review, 13, 421–426.

    Article  Google Scholar 

  • Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Attention, Perception, & Psychophysics, 64, 741–753.

    Article  Google Scholar 

  • *Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858.

    PubMed  Google Scholar 

  • *Folk, C. L., & Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16, 215–231.

    Article  Google Scholar 

  • *Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.

    PubMed  Google Scholar 

  • Gaspelin, N., Ruthruff, E., & Lien, M. C. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42, 1104–1120.

    PubMed  Google Scholar 

  • *Gaspelin, N., Ruthruff, E., Lien, M. C., & Jung, K. (2012). Breaking through the attentional window: Capture by abrupt onsets versus color singletons. Attention, Perception, & Psychophysics, 74, 1461–1474.

    Article  Google Scholar 

  • Gibson, B. S., & Amelio, J. (2000). Inhibition of return and attentional control settings. Perception & Psychophysics, 62, 496–504.

    Article  Google Scholar 

  • Goh, J. X., Hall, J. A., & Rosenthal, R. (2016). Mini meta-analysis of your own studies: Some arguments on why and a primer on how. Social and Personality Psychology Compass, 10, 535–549.

    Article  Google Scholar 

  • *Goller, F., & Ansorge, U. (2015). There is more to trial history than priming in attentional capture experiments. Attention, Perception, & Psychophysics, 77, 1574–1584.

    Article  Google Scholar 

  • *Goller, F., Ditye, T., & Ansorge, U. (2016). The contribution of color to attention capture effects during search for onset targets. Attention, Perception, & Psychophysics, 78, 789–807.

    Article  Google Scholar 

  • Grubert, A., & Eimer, M. (2013). Qualitative differences in the guidance of attention during single-colour and multiple-colour visual search: Behavioural and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 39, 1433–1442.

    PubMed  Google Scholar 

  • *Grubert, A., & Eimer, M. (2016). All set, indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 42, 1215–1230.

    PubMed  Google Scholar 

  • Grubert, A., Righi, L. L., & Eimer, M. (2013). A unitary focus of spatial attention during attentional capture: Evidence from event-related brain potentials. Journal of Vision, 13, 9.

    Article  PubMed  Google Scholar 

  • Harris, A. M., Becker, S.I., & Remington, R. W. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, & Psychophysics, 77, 2305–2321.

    Article  Google Scholar 

  • *Harris, A. M., Dux, P. E., Jones, C. N., & Mattingley, J. B. (2017). Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention. NeuroImage, 152, 171–183.

    Article  PubMed  Google Scholar 

  • Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioannidis, J. P. A., Munafò, M. R., Fusar-Poli, P., Nosek, B. A., & David, S. P. (2014). Publication and other reporting biases in cognitive sciences: Detection, prevalence and prevention. Trends in Cognitive Sciences, 18, 235–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38, 758–775.

    PubMed  Google Scholar 

  • Irons, J. L., & Remington, R. W. (2013). Can attentional control settings be maintained for two color-location conjunctions? Evidence from an RSVP task. Attention, Perception, & Psychophysics, 75, 862–875.

    Article  Google Scholar 

  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 1254–1259.

    Article  Google Scholar 

  • Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 187–203). Hillsdale: Erlbaum.

    Google Scholar 

  • Kerzel, D., & Barras, C. (2016). Distractor rejection in visual search breaks down with more than a single distractor feature. Journal of Experimental Psychology: Human Perception and Performance, 42, 648–657.

    PubMed  Google Scholar 

  • *Kiss, M., Grubert, A., & Eimer, M. (2013). Top-down task sets for combined features: Behavioral and electrophysiological evidence for two stages in attentional object selection. Attention, Perception, & Psychophysics, 75, 216–228.

    Article  Google Scholar 

  • Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24, 749–759.

    Article  PubMed  Google Scholar 

  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147.

    Article  PubMed  Google Scholar 

  • Kristjánsson, Á, & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72, 5–18.

    Article  Google Scholar 

  • Krujne, W., Brascamp, J. W., Kristjánsson, Á, & Meeter, M. (2015). Can a single short-term mechanism account for priming of pop-out? Vision Research, 115, 17–22.

    Article  Google Scholar 

  • Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size. PLoS One, 9, e105825.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. Journal of Experimental Psychology: Human Perception and Performance, 29, 1003–1020.

    PubMed  Google Scholar 

  • Lamy, D. F., & Kristjánsson, Á (2013). Is goal-directed attentional guidance just intertrial priming? A review. Journal of Vision, 13, 14.

    Article  PubMed  Google Scholar 

  • *Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of task relevance and stimulus-driven salience in feature-search mode. Journal of Experimental Psychology: Human Perception and Performance, 30, 1019–1031.

    PubMed  Google Scholar 

  • Leber, A. B., & Egeth, H. E. (2006). Attention on autopilot: Past experience and attentional set. Visual Cognition, 14, 565–583.

    Article  Google Scholar 

  • *Liao, H. I., & Yeh, S. L. (2011). Interaction between stimulus-driven orienting and top-down modulation in attentional capture. Acta Psychologica, 138, 52–59.

    Article  PubMed  Google Scholar 

  • Liao, H.-I., & Yeh, S.-L. (2013). Capturing attention is not that simple: Different mechanisms for stimulus-driven and contingent capture. Attention, Perception, & Psychophysics, 75, 1703–1714.

    Article  Google Scholar 

  • *Lien, M. C., Ruthruff, E., Goodin, Z., & Remington, R. W. (2008). Contingent attentional capture by top-down control settings: Converging evidence from event-related potentials. Journal of Experimental Psychology: Human Perception and Performance, 34, 509–530.

    PubMed  Google Scholar 

  • *Lien, M. C., Ruthruff, E., & Johnston, J. C. (2010). Attentional capture with rapidly changing attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 36, 1–16.

    PubMed  Google Scholar 

  • Liu, T., & Jigo, M. (2017). Limits in feature-based attention to multiple colors. Attention, Perception, & Psychophysics, 79, 2327–2337.

    Article  Google Scholar 

  • Maljkovic, V., & Martini, P. (2005). Implicit short-term memory and event frequency effects in visual search. Vision Research, 45, 2831–2846.

    Article  PubMed  Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.

    Article  Google Scholar 

  • *Mertes, C., Wascher, E., & Schneider, D. (2017). Compliance instead of flexibility? On age-related differences in cognitive control during visual search. Neurobiology of Aging, 53, 169–180.

    Article  PubMed  Google Scholar 

  • Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7, 105–125.

    Article  PubMed  Google Scholar 

  • Nothdurft, H.-C. (1993). The role of features in pre-attentive vision: Comparison of orientation, motion, and color cues. Vision Research, 33, 1937–1958.

    Article  PubMed  Google Scholar 

  • Olivers, C. N., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836–863.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32A, 3–25.

    Article  Google Scholar 

  • *Prinzmetal, W., Taylor, J. A., Myers, L. B., & Nguyen-Espino, J. (2011). Contingent capture and inhibition of return: A comparison of mechanisms. Experimental Brain Research, 214, 47–60.

    Article  PubMed  Google Scholar 

  • Rauschenberger, R. (2003). Attentional capture by auto-and allo-cues. Psychonomic Bulletin & Review, 10, 814–842.

    Article  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860.

    PubMed  Google Scholar 

  • Remington, R. W., Folk, C. L., & McLean, J. P. (2001). Contingent attentional capture or delayed allocation of attention? Attention, Perception, & Psychophysics, 63, 298–307.

    Article  Google Scholar 

  • *Roque, N. A., Wright, T. J., & Boot, W. R. (2016). Do different attention capture paradigms measure different types of capture? Attention, Perception, & Psychophysics, 78, 2014–2030.

    Article  Google Scholar 

  • Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86, 638–641.

    Article  Google Scholar 

  • RStudio Team. (2016). RStudio: Integrated development for R. Boston: Rstudio.

    Google Scholar 

  • Schoeberl, T., Ditye, T., & Ansorge, U. (2018). Same-location costs in peripheral cueing: The role of cue awareness and feature changes. Journal of Experimental Psychology: Human Perception and Performance, 44, 433–451.

    PubMed  Google Scholar 

  • Schoeberl, T., Fuchs, I., Theeuwes, J., & Ansorge, U. (2015). Stimulus-driven attentional capture by subliminal onset cues. Attention, Perception, & Psychophysics, 77, 737–748.

    Article  Google Scholar 

  • *Schoenhammer, J. G., & Kerzel, D. (2017). Detection costs and contingent attentional capture. Attention, Perception, & Psychophysics, 79, 429–437.

    Article  Google Scholar 

  • Schooler, J. (2011). Unpublished results hide the decline effect. Nature, 470, 437.

    Article  PubMed  Google Scholar 

  • Sterling, T. D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance—or vice versa. Journal of the American Statistical Association, 54, 30–34.

    Google Scholar 

  • Sterne, J. A., & Egger, M. (2005). Regression methods to detect publication and other bias in meta-analysis. In H. R. Rothstein, A. J. Sutton & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment and adjustments (pp. 99–110). Chichester: Wiley.

    Google Scholar 

  • Sterne, J. A., Sutton, A. J., Ioannidis, J. P., Terrin, N., Jones, D. R., Lau, J., & Tetzlaff, J. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. British Medical Journal, 343, d4002.

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (1991). Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Attention, Perception, & Psychophysics, 49, 83–90.

    Article  Google Scholar 

  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Attention, Perception, & Psychophysics, 51, 599–606.

    Article  Google Scholar 

  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (2013). Feature-based attention: It is all bottom-up priming. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20130055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 105–125). Cambridge: MIT Press.

    Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48.

    Article  Google Scholar 

  • Weichselbaum, H., & Ansorge, U. (2018). Bottom-up attention capture with distractor and target singletons defined in the same (color) dimension is not a matter of feature uncertainty. Attention, Perception, & Psychophysics, 80, 1350–1361.

    Article  Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.

    Article  Google Scholar 

  • Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29, 483–502.

    PubMed  Google Scholar 

  • *Worschech, F., & Ansorge, U. (2012). Top-down search for color prevents voluntary directing of attention to informative singleton cues. Experimental Psychology, 59, 153–162.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.

    PubMed  Google Scholar 

  • *Yeh, S. L., & Liao, H. I. (2008). On the generality of the contingent orienting hypothesis. Acta Psychologica, 129, 157–165.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Büsel.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

This article does not contain any original studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büsel, C., Voracek, M. & Ansorge, U. A meta-analysis of contingent-capture effects. Psychological Research 84, 784–809 (2020). https://doi.org/10.1007/s00426-018-1087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1087-3

Navigation