Skip to main content
Log in

Contingent capture in cueing: the role of color search templates and cue-target color relations

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Visual search studies have shown that attention can be top-down biased to a specific target color, so that only items with this color or a similar color can capture attention. According to some theories of attention, colors from different categories (i.e., red, green, blue, yellow) are represented independently. However, other accounts have proposed that these are related—either because color is filtered through broad overlapping channels (4-channel view), or because colors are represented in one continuous feature space (e.g., CIE space) and search is governed by specific principles (e.g., linear separability between colors, or top-down tuning to relative colors). The present study tested these different views using a cueing experiment in which observers had to select one target color (e.g., red) and ignore two or four differently colored distractors that were presented prior to the target (cues). The results showed clear evidence for top-down contingent capture by colors, as a target-colored cue captured attention more strongly than differently colored cues. However, the results failed to support any of the proposed views that different color categories are related to one another by overlapping channels, linear separability, or relational guidance (N = 96).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansorge, U., & Becker, S. I. (2012). Automatic priming of attentional control by relevant colors. Attention, Perception, & Psychophysics, 74, 83–104.

    Google Scholar 

  • Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention, Perception, & Psychophysics, 72, 342–352.

    Article  Google Scholar 

  • Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29, 937–948.

    PubMed  Google Scholar 

  • Ansorge, U., & Heumann, M. (2004). Peripheral cuing by abrupt-onset cues: the influence of color in S-R corresponding conditions. Acta Psychologica, 116(2), 115–143.

    Article  PubMed  Google Scholar 

  • Ansorge, U., & Horstmann, G. (2007). Preemptive control of attentional capture by color: Evidence from trial-by-trial analysis and ordering of onsets of capture effects in RT distributions. Quarterly Journal of Experimental Psychology, 60, 952–975.

    Article  Google Scholar 

  • Ansorge, U., Kiss, M., & Eimer, M. (2009). Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychonomic Bulletin & Review, 16, 648–653.

    Article  Google Scholar 

  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed dichotomy. Trends in Cognitive Science, 16, 437–443.

    Article  Google Scholar 

  • Bauer, B. G., Jolicoeur, P., & Cowan, W. (1998). The linear separability effect in color visual search: Ruling out the additive color hypothesis. Perception & Psychophysics, 60, 1083–1093.

    Article  Google Scholar 

  • Becker, S. I. (2007). Irrelevant singletons in pop-out search: Attentional capture or filtering costs? Journal of Experimental Psychology: Human Perception and Performance, 33, 764–787.

    PubMed  Google Scholar 

  • Becker, S. I. (2010a). The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–265.

    Article  Google Scholar 

  • Becker, S. I. (2010b). Oculomotor capture by irrelevant colour singletons depends on intertrial priming. Vision Research, 50, 2116–2126.

    Article  PubMed  Google Scholar 

  • Becker, S. I., Ansorge, U., & Horstmann, G. (2009). Can intertrial priming account for the similarity effect in visual search? Vision Research, 49, 1738–1756.

    Article  PubMed  Google Scholar 

  • Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–1476.

    PubMed  Google Scholar 

  • Eckstein, M., Drescher, B., & Shimozaki, S. S. (2006). Attentional cues in real scenes, saccadic targeting, and Bayesian priors. Psychological Science, 17, 973–980.

    Article  PubMed  Google Scholar 

  • Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20, 1423–1433.

    Article  PubMed Central  PubMed  Google Scholar 

  • Einhäuser, W., Spain, M., & Perona, P. (2008). Objects predict fixations better than early salience. Journal of Vision, 8, 1–26.

    Google Scholar 

  • Fecteau, J. (2007). Priming of pop-out depends on the current goals of the observers. Journal of Vision, 7, 1–11.

    Article  PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858.

    PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16, 215–231.

    Article  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.

    PubMed  Google Scholar 

  • Fortier-Gauthier, U., Dell’Acqua, R., & Jolicœur, P. (2013). The “red-alert” effect in visual search: Evidence from human electrophysiology. Psychophysiology (in press).

  • Geyer, T., Krummenacher, J., & Müller, H. J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326.

    Article  PubMed  Google Scholar 

  • Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not in the left. Proceedings of the National Academy of Sciences of the United States of America, 103, 489–494.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grubert, A., & Eimer, M. (2013). Qualitative differences in the guidance of attention during single-colour and multiple-colour visual search: Behavioural and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance (in press).

  • Harris, A., Remington, R. W., & Becker, S. I. (2013). Feature-specificity in attentional capture by size and colour. Journal of Vision (in press).

  • Hodsoll, J. P., & Humphreys, G. W. (2005). The effect of target foreknowledge on visual search for categorically separable orientation targets. Vision Research, 45, 2346–2351.

    Article  PubMed  Google Scholar 

  • Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38, 758–775.

    PubMed  Google Scholar 

  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2, 4–11.

    Article  Google Scholar 

  • Kim, M.-S., & Cave, K. (1999). Top-down and bottom-up attentional control: On the nature of interference from a salient distractor. Perception & Psychophysics, 61, 1009–1013.

    Article  Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.

    Article  Google Scholar 

  • Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35, 1–16.

    PubMed  Google Scholar 

  • Navalpakkam, V., & Itti, L. (2007). Search goal tunes visual features optimally. Neuron, 53, 605–617.

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606.

    Article  Google Scholar 

  • Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII (pp. 105–125). Cambridge: MIT Press.

    Google Scholar 

  • Töllner, T., Müller, H., & Zehetleitner, M. (2012). Top-down dimensional weight set determines the capture of visual attention: Evidence from the PCN component. Cerebral Cortex, 22, 1554–1563.

    Article  PubMed  Google Scholar 

  • Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113, 766–786.

    Article  PubMed  Google Scholar 

  • Witzel, C., & Gegenfurtner, K. R. (2011). Is there a lateralized category effect for color? Journal of Vision, 11(12), 16.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.

    Article  Google Scholar 

  • Worschech, F., & Ansorge, U. (2012). Top-down search for color prevents voluntary directing of attention to informative singleton cues. Experimental Psychology, 59, 153–162.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.

    Google Scholar 

Download references

Acknowledgments

Supported by project number CS11-009 of the WWTF (Wiener Wissenschafts- und Technologiefonds) to Ulrich Ansorge, Otmar Scherzer, and Shelley Buchinger, and an ARC (Australian Research Council) Discovery Grant DP110100588 awarded to Stefanie I. Becker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Ansorge.

Appendix

Appendix

See Table 1.

Table 1 Results of mixed-model ANOVAs of the meas corret reaction times (RTs) and of the error rates (ERs) as a function of the within-participant variables cue-target positions (SP vs. DP), block (2CC vs. 4CC) and cue-target color similarity (target-similar vs. target-different), and the between-participants variables target color (red, yellow, green, or blue) and dissimilar cue color in the 2CC block (red, yellow, green, or blue)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansorge, U., Becker, S.I. Contingent capture in cueing: the role of color search templates and cue-target color relations. Psychological Research 78, 209–221 (2014). https://doi.org/10.1007/s00426-013-0497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0497-5

Keywords

Navigation