Skip to main content
Log in

Arabidopsis root apical meristem survival during waterlogging is determined by phytoglobin through nitric oxide and auxin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Over-expression of phytoglobin mitigates the degradation of the root apical meristem (RAM) caused by waterlogging through changes in nitric oxide and auxin distribution at the root tip.

Abstract

Plant performance to waterlogging is ameliorated by the over-expression of the Arabidopsis Phytoglobin 1 (Pgb1) which also contributes to the maintenance of a functional RAM. Hypoxia induces accumulation of ROS and damage in roots of wild type plants; these events were preceded by the exhaustion of the RAM resulting from the loss of functionality of the WOX5-expressing quiescent cells (QCs). These phenotypic deviations were exacerbated by suppression of Pgb1 and attenuated when the same gene was up-regulated. Genetic and pharmacological studies demonstrated that degradation of the RAM in hypoxic roots is attributed to a reduction in the auxin maximum at the root tip, necessary for the specification of the QC. This reduction was primarily caused by alterations in PIN-mediated auxin flow but not auxin synthesis. The expression and localization patterns of several PINs, including PIN1, 2, 3 and 4, facilitating the basipetal translocation of auxin and its distribution at the root tip, were altered in hypoxic WT and Pgb1-suppressing roots but mostly unchanged in those over-expressing Pgb1. Disruption of PIN1 and PIN2 signal in hypoxic roots suppressing Pgb1 initiated in the transition zone at 12 h and was specifically associated to the absence of Pgb1 protein in the same region. Exogenous auxin restored a functional RAM, while inhibition of the directional auxin flow exacerbated the degradation of the RAM. The regulation of root behavior by Pgb1 was mediated by nitric oxide (NO) in a model consistent with the recognized function of Pgbs as NO scavengers. Collectively, this study contributes to our understanding of the role of Pgbs in preserving root meristem function and QC niche during conditions of stress, and suggests that the root transition zone is most vulnerable to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All materials and data used or generated in this study can be made available upon request.

Abbreviations

NAA:

Auxin 1-naphtaleneacetic acid

NPA:

Naphthaleneacetic acid acid

Pgb:

Phytoglobin

QC:

Quiescent cells

RAM:

Root apical meristem

SNP:

Sodium nitroprusside

References

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 12:1956–1960

    Article  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 3:405–417

    Article  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  CAS  PubMed  Google Scholar 

  • Cseplo A, Zsigmond L, Andrasi N et al (2021) The AtCRK5 protein kinase is required to maintain the ROS NO balance affecting the PIN2-mediated root gravitropic response in Arabidopsis. Int J Mol Sci 22:5979–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51:89–97

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang W, Li B, Wang Y, Li K, Sodmergen HC, Zhang Y, Li X (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

    Article  CAS  PubMed  Google Scholar 

  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C (2013) Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. Plant J 74:946–958

    Article  CAS  PubMed  Google Scholar 

  • Eysholdt-Derzso E, Sauter M (2017) Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol 175:412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108:18506–18511

    Article  PubMed  PubMed Central  Google Scholar 

  • Friml J, Benkova E, Blilou I, Wisniewska J et al (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gomez G, Garay-Arroyo A, García-Ponce B, Sánchez M, Álvarez-Buylla M (2021) Hormonal regulation of stem cell proliferation at the Arabidopsis thaliana root stem cell niche. Front Plant Sci 12:628491. https://doi.org/10.3389/fpls.2021.628491

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859

    Article  CAS  PubMed  Google Scholar 

  • Guan B, Lin Z, Liu D, Li C, Zhou Z, Mei F, Li J, Deng X (2019) Effect of waterlogging-induced autophagy on programmed cell death in Arabidopsis roots. Front Plant Sci 10:468–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartman S, Liu Z, van Veen H, Vicente J et al (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 10:4020–4025

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebelstrup KH, Hunt P, Dennis ES, Jensen SB, Jensen EØ (2006) Hemoglobin is essential for normal growth of Arabidopsis organs. Physiol Plant 127:157–166

    Article  CAS  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins—what’s happening beyond nitric oxide scavenging? AoB Plants. https://doi.org/10.1093/aobpla/pls004

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong LW, Yan DW, Liu WC, Chen HG, Lu YT (2014) TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis. J Exp Bot 65:275–286

    Article  CAS  PubMed  Google Scholar 

  • Hong JH, Chu H, Zhang C, Ghosh D, Gong X, Xu J (2015) A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap. Front Plant Sci 6:206–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Hill RD, Wally OS, Dionisio G, Ayele BT, Jami SK, Stasolla C (2014) Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol 165:810–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:17197–17202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MB (2002) Long-distance signaling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J, Zažímalová E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhu C, Gan L, Ng D, Xia K (2015) GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Rep 34:483–494

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Sauter M (2019) Polar auxin transport determines adventitious root emergence and growth in rice. Front Plant Sci 10:444–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin XY, Ye YQ, Fan SK, Jin CW, Zheng SJ (2016) Increased sucrose accumulation regulates iron-deficiency responses by promoting auxin signaling in Arabidopsis plants. Plant Physiol 170:907–920

    Article  CAS  PubMed  Google Scholar 

  • Lin I-S, Wu Y-S, Chen C-T, Chen GH, Hwang S-J, Jauh G-Y, Tzen JTC, Yang C-Y (2017) AtRBOH I confers submergence tolerance and is involved in auxin-mediated signaling pathways under hypoxic stress. Plant Growth Regul 83:277–285

    Article  CAS  Google Scholar 

  • Liu W, Li R-J, Han T-T, Cai W, Fu Z-W, Lu Y-T (2015) Salt stress reduces root meristem size by nitric-oxide mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Zhang H, Fang X, Zhang Y, Jin C (2018) Auxin acts downstream of ethylene and nitric oxide to regulate magnesium deficiency-induced root hair development in Arabidopsis thaliana. Plant Cell Physiol 59:1452–1465

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Löfke C, Luschnig C, Kleine-Vehn J (2012) Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 130:82–94

    Article  PubMed  Google Scholar 

  • Loreti E, Perata P (2020) The many facets of hypoxia in plants. Plants 9:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lulsdorf MM, Yuan HY, Slater SMH, Vandenberg A, Han X, Zaharia LI, Abrams SR (2013) Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Plant Growth Regul 71:191–187

    Article  CAS  Google Scholar 

  • Mancuso S, Boselli M (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta 214:767–774

    Article  CAS  PubMed  Google Scholar 

  • Manoli A, Trevisan S, Voigt B, Yokawa K, Baluska F, Quaggiotti S (2015) Nitric oxide-mediated maize root apex responses to nitrate are regulated by auxin and strigolactones. Front Plant Sci 6:1269–1273

    PubMed  Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Studies on synchronization of some pigment-deficient Chlorella mutants. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Mira MM, Hill RD, Stasolla C (2016) Phytoglobins improve hypoxic root growth by alleviating apical meristem cell death. Plant Physiol 172:2044–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira MM, Huang S, Kapoor K, Hammond C, Hill RD, Stasolla C (2017) Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit. J Exp Bot 68:5653–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira MM, El-Khateeb EA, Gaafar RM, Igamberdiev AU, Hill RD, Stasolla C (2020) Stem cell fate in hypoxic root apical meristems is influenced by phytoglobin expression. J Exp Bot 71:1350–1362

    CAS  PubMed  Google Scholar 

  • Mira MM, Ibrahim S, So K, Kowatsch R, Duncan RW, Hill RD, Stasolla C (2023) Specificity in root domain-accumulation of Phytoglobin1 and nitric oxide (NO) determines meristematic viability in water-stressed Brassica napus roots. Ann Bot 131:475–490. https://doi.org/10.1093/aob/mcac161

    Article  CAS  PubMed  Google Scholar 

  • Mugnai S, Azzarello E, Baluška F, Mancuso S (2012) Local root apex hypoxia induces NO-mediated hypoxic acclimation of the entire root. Plant Cell Physiol 53:912–920

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant 117:508–520

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Zhang L, Shi Y-F, Wang C, Lu Y, Pan J, Liu J-Z (2017) Excessive cellular S-nitrosothiol impairs endocytosis of the auxin efflux transporter PIN2. Front Plant Sci 8:1988. https://doi.org/10.3389/fpls.2017.01988

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris R, Vazquez MM, Graziano M, Terrile MC, Miller ND, Spalding EP, Otegui MS, Casalongue CA (2018) Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in Arabidopsis roots. Front Plant Sci 9:495–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasternak T, Tietz O, Rapp K, Begheldo M, Nitschke R, Ruperti B, Palme K (2015) Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods 11:50–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Perata P, Alpi A (1993) Plant responses to anaerobiosis. Plant Sci 93:1–17

    Article  CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33:576–588

    Article  CAS  PubMed  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  • Roberts JKM, Callis J, Jardetsky O, Walbot V, Freeling M (1984) Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81:3379–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi E, Di Mambro R, Sabatini S (2020) Dissecting mechanisms in root growth from the transition zone perspective. J Exp Bot 71:2390–2396

    Article  CAS  PubMed  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    Article  CAS  PubMed  Google Scholar 

  • Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I et al (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402–3412

    Article  CAS  PubMed  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Rev Curr Opin Plant Biol 16:282–287

    Article  Google Scholar 

  • Shahan R, Nolan TM, Benfey PN (2021) Single-cell analysis of cell identity in the Arabidopsis root apical meristem: insights and opportunities. J Exp Bot 72:6679–6686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Cardenas RI, Ricard B, Saglio P, Hill RD (2003) Hemoglobin and hypoxic acclimation in maize root tips. Russ J Plant Physiol 50:821–826

    Article  CAS  Google Scholar 

  • Tian C, Qian J, Wang F, Wang GL, Xu Z-S, Xiong AS (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS ONE 10(2):e0117569. https://doi.org/10.1371/journal.pone.0117569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289

    Article  PubMed  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:13–20

    Article  Google Scholar 

  • Verbelen JP, De Cnodder T, Vissenberg K, Baluska F (2006) The root apex of Arabidopsis thaliana consists of four distinct zones of cellular activities: meristematic zone, transition zone, fast elongation zone, and growth terminating zone. Plant Signal Behav 1:296–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531

    Article  CAS  PubMed  Google Scholar 

  • Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM, Riegler H, Hoefgen R, Perata P, Van Dongen JT, Licausi F (2019) An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569:714–717

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006) A molecular framework for plant regeneration. Science 311:385–388

    Article  CAS  PubMed  Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Article  CAS  Google Scholar 

  • Youssef MS, Mira MM, Renault S, Hill RD, Stasolla C (2016) Phytoglobin expression influences soil flooding response of corn plants. Ann Bot 118:919–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef MS, Mira MM, Millar JL, Becker MG, Belmonte MF, Hill RD, Stasolla C (2019) Spatial identification of transcripts and biological processes in laser micro-dissected sub-regions of waterlogged corn roots with altered expression of phytoglobin. Plant Physiol Biochem 139:350–365

    Article  CAS  PubMed  Google Scholar 

  • Youssef MS, Mira MM, Renault S, Hill RD, Stasolla C (2022) Phytoglobin expression alters the Na+/K+ balance and antioxidant responses in soybean plants exposed to Na2SO4. Int J Mol Sci 23:4072–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39:120–135

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Gu RL, Gao P, Wang GY (2008) A nonsymbiotic hemoglobin gene from maize, ZmHb, is involved in response to submergence, high-salt and osmotic stresses. Plant Cell Tissue Organ Cult 95:227–237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following colleagues for providing the Arabidopsis lines: Dr. Hebelstrup (35S:Pgb1 and Pgb1–RNAi); and Dr. Lorenzo (PIN–GFP).

Funding

This work was supported by a NSERC Discovery Grant to CS and a NSERC CRD Grant to RWD and CS.

Author information

Authors and Affiliations

Authors

Contributions

MMM performed the majority of the experiments and helped writing the manuscript. EAE did the waterlogging experiments and some of the immunolocalization analyses. MSY helped with the waterlogging experiments and the phenotypic characterization of the lines. KC helped with some of the gene expression studies. KS optimized the antibody analyses. RWD contributed with the antibody analyses and funded some of the experiments. RDW contributed with the interpretation of data and writing. CS conceptualized the work, interpreted the data, and helped with the writing.

Corresponding author

Correspondence to Claudio Stasolla.

Ethics declarations

Conflict of interest

There is no conflict of interest to report.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 KB)

Supplementary file2 (PDF 938 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mira, M.M., El-Khateeb, E.A., Youssef, M.S. et al. Arabidopsis root apical meristem survival during waterlogging is determined by phytoglobin through nitric oxide and auxin. Planta 258, 86 (2023). https://doi.org/10.1007/s00425-023-04239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04239-4

Keywords

Navigation