Skip to main content
Log in

Synthetic promoters from blueberry red ringspot virus (BRRV)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We analyzed the synthetic full-length transcript promoter of Blueberry red ringspot virus (BRRV) and developed two chimeric promoters (MBR3 and FBR3). Transcriptional activities of these chimeric promoters were found equivalent to that of the CaMV35S2 promoter. Chimeric promoters driven plant-derived PaDef protein showed high antimicrobial activities against several pathogens.

Abstract

Blueberry red ringspot virus (BRRV) is a pararetrovirus under the genus, Soymovirus belongs to the Caulimoviridae family. We have made a synthetic version of the BRRV-Flt promoter and analyzed its activity in detail. A 372 bp promoter fragment BR3 (− 212 to + 160) showed the strongest transcriptional activity compared with other fragments in both transient and transgenic assays; its activity was found near equivalent to that of the CaMV35S promoter. We constructed two chimeric promoters; MBR3 and FBR3 by fusing the UASs (Upstream activation sequences) of Mirabilis mosaic virus (MUAS; − 297 to − 38; 335 bp) and Figwort mosaic virus (FUAS; − 249 to − 54; 303 bp) respectively to the core promoter domain of BR3 (BR3; − 212 to + 160; 372 bp). The activities of MBR3 and FBR3 promoters were found equivalent to that of the activity of the CaMV35S2 promoter and approximately 4.0 (four) times stronger than that of the CaMV35S promoter. Histochemical and fluorometric GUS assays confirmed the above observation. The transcriptional efficacies of these recombinant promoters were tested by evaluating the antibacterial and antifungal activities of recombinant plant-derived antimicrobial peptide Persea americana var. drymifolia defensin (PaDef) driven under these promoters. Bioassays showed promising antifungal activities of the plant made PaDef against Alternaria alternata and antibacterial property against Gram-positive (S. aureus and R. fascians) and Gram-negative bacteria (E. coli and P. aeruginosa). Based upon the above results, MBR3 and FBR3 could be useful promoters for plant genetic engineering and can become useful substitutes for the widely used CaMV35S2 promoter in plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from transgenic flowers, (d) 3 week-old whole transgenic tobacco seedlings, (e) Root tips of above-mentioned promoters. f Transient GFP expression analysis of BR3, MBR3, FBR3 promoter along with CaMV35S(35S) and CaMV35S2(35S2) promoters by agro-infiltration of tobacco leaves and pictures taken under a UV. g Transient GFP expression analysis of above promoters measured using ImageJ software in agro-infiltrated N. tabacum Samsun NN leaves, presented with respective standard deviation and statistical significance was determined by Student’s t test (*p < 0.05; **p < 0.01; ***p < 0.001)

Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BRRV:

Blueberry red ringspot virus

CP:

Core promoter

UAS:

Upstream activation sequence

MMV:

Mirabilis mosaic virus

FMV:

Figwort mosaic virus

MBR3:

Chimeric promoter developed by fusing MMV (−297 to −38) and BRRV (−212 to + 160)

FBR3:

Chimeric promoter developed by fusing FMV (−249 to −54) and BRRV (−212 to + 160)

KanR :

Kanamycin resistant

KanS :

Kanamycin susceptible

X-gluc:

5-Bromo-4-chloro-3-indolyl β-d-glucopyranosiduronic acid

GUS:

β-Glucuronidase

GFP:

Green fluorescent protein

AMP:

Antimicrobial peptide

PaDef:

Persea americana Var. drymifolia defensin

References

  • Acharya S, Ranjan R, Pattanaik S, Maiti IB, Dey N (2014) Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta 239(2):381–396

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90(1–2):47–62

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Chatterjee A, Das NC, Raha S, Maiti IB, Shrestha A, Khan A, Acharya S, Dey N (2017) Enrichment of apoplastic fluid with therapeutic recombinant protein for efficient biofarming. Biotechnol Prog 33(3):726–736

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Nelson R, Sherwood J (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(4):664–668

    CAS  PubMed  Google Scholar 

  • Deb D, Dey N (2019) Synthetic salicylic acid inducible recombinant promoter for translational research. J Biotechnol 297:9–18

    Article  CAS  PubMed  Google Scholar 

  • Deb D, Shrestha A, Maiti IB, Dey N (2018) Recombinant promoter (MUASCsV8CP) driven totiviral killer protein 4 (KP4) imparts resistance against fungal pathogens in transgenic tobacco. Front Plant Sci 9:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Deb D, Khan A, Dey N (2020) Phoma diseases: epidemiology and control. Plant Pathol 69(7):1203–1217

    Article  CAS  Google Scholar 

  • Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40(5):771–782

    Article  CAS  PubMed  Google Scholar 

  • Dey N, Sarkar S, Acharya S, Maiti IB (2015) Synthetic promoters in planta. Planta 242(5):1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Gao A-G, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18(12):1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282

    Article  CAS  PubMed  Google Scholar 

  • Glasheen B, Polashock J, Lawrence D, Gillett J, Ramsdell D, Vorsa N, Hillman B (2002) Cloning, sequencing, and promoter identification of Blueberry red ringspot virus, a member of the family Caulimoviridae with similarities to the “Soybean chlorotic mottle-like” genus. Adv Virol 147(11):2169–2186

    CAS  Google Scholar 

  • Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM, Salgado-Garciglia R, Rodríguez-Zapata LC, Ochoa-Zarzosa A, López-Meza JE (2013) Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus. BioMed Res Internat 2013:10–34

    Article  Google Scholar 

  • Guzmán-Rodríguez JJ, López-Gómez R, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE (2016) The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7. Biomed Pharmacother 82:620–627

    Article  PubMed  Google Scholar 

  • Jauvion V, Rivard M, Bouteiller N, Elmayan T, Vaucheret H (2012) RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS. PLoS ONE 7(1):e29785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karjee S, Islam MN, Mukherjee SK (2008) Screening and identification of virus-encoded RNA silencing suppressors. RNAi. Springer, London, pp 187–203

    Chapter  Google Scholar 

  • Kim E, Lee HM, Kim YH (2017) Morphogenetic alterations of Alternaria alternata exposed to dicarboximide fungicide, iprodione. Plant Pathol J 33(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroumova AB, Sahoo DK, Raha S, Goodin M, Maiti IB, Wagner GJ (2013) Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Rep 32(11):1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS ONE 6(9):e24627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Patro S, Ghosh J, Das A, Maiti IB, Dey N (2012) Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root-and leaf-activity using TGACG motif rearrangement. Gene 503(1):36–47

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Res 46(D1):D708–D717

    Article  CAS  PubMed  Google Scholar 

  • Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244(2):440–444

    Article  CAS  PubMed  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6(2):143–156

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Patro S, Purohit S, Jain S, Senapati S, Dey N (2014) Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrob Agents Chemother 58(11):6896–6903

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins PM, Merfa MV, Takita MA, De Souza AA (2018) Persistence in phytopathogenic bacteria: do we know enough? Front Microbiol 9:1099

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke A (2006) RNA-directed DNA methylation and Pol IVb in ArabidopsisCold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Meng D-M, Dai H-X, Gao X-F, Zhao J-F, Guo Y-J, Ling X, Dong B, Zhang Z-Q, Fan Z-C (2016) Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris. Protein Expr Purif 127:35–43

    Article  CAS  PubMed  Google Scholar 

  • Meng D-M, Zhao J-F, Ling X, Dai H-X, Guo Y-J, Gao X-F, Dong B, Zhang Z-Q, Meng X, Fan Z-C (2017) Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr Purif 130:90–99

    Article  CAS  PubMed  Google Scholar 

  • Odell JT, Dudley RK, Howell SH (1981) Structure of the 19 S RNA transcript encoded by the cauliflower mosaic virus genome. Virology 111(2):377–385

    Article  CAS  PubMed  Google Scholar 

  • Patro S, Maiti S, Panda SK, Dey N (2015) Utilization of plant-derived recombinant human β-defensins (hBD-1 and hBD-2) for averting salmonellosis. Transgenic Res 24(2):353–364

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik S, Dey N, Bhattacharyya S, Maiti IB (2004) Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Sci 167(3):427–438

    Article  CAS  Google Scholar 

  • Petrzik K, Pribylova J, Pleško IM, Spak J (2011) Complete genome sequences of blueberry red ringspot virus (Caulimoviridae) isolates from the Czech Republic and Slovenia. Arch Virol 156(10):1901

    Article  CAS  PubMed  Google Scholar 

  • Polashock JJ, Ehlenfeldt MK, Crouch JA (2009) Molecular detection and discrimination of Blueberry red ringspot virus strains causing disease in cultivated blueberry and cranberry. Plant Dis 93(7):727–733

    Article  CAS  PubMed  Google Scholar 

  • Rajeev Kumar S, Anunanthini P, Ramalingam S (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:693

    Google Scholar 

  • Ranjan R, Patro S, Kumari S, Kumar D, Dey N, Maiti IB (2011) Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of Figwort mosaic virus (FMV). J Biotechnol 152(1–2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Saad N, Alcalá-Briseño R, Polston J, Olmstead J, Varsani A, Harmon P (2020) Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Sahoo DK, Sarkar S, Raha S, Das NC, Banerjee J, Dey N, Maiti IB (2015) Analysis of dahlia mosaic virus full-length transcript promoter-driven gene expression in transgenic plants. Plant Mol Biol Report 33(2):178–199

    Article  CAS  Google Scholar 

  • Sarkar S, Jain S, Rai V, Sahoo DK, Raha S, Suklabaidya S, Senapati S, Rangnekar VM, Maiti IB, Dey N (2015) Plant-derived SAC domain of PAR-4 (prostate apoptosis response 4) exhibits growth inhibitory effects in prostate cancer cells. Front Plant Sci 6:822

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathoff AE, Lewenza S, Samac DA (2020) Plant defensin antibacterial mode of action against Pseudomonas species. BMC Microbiol 20(1):1–11

    Article  Google Scholar 

  • Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Deep S, Sharma M, Bhati DS (2013) Genetic variation of Alternaria brassicae (Berk) Sacc causal agent of dark leaf spot of cauliflower and mustard in India. J General Plant Pathol 79(1):41–45

    Article  Google Scholar 

  • Song G-q, Yamaguchi K-i (2003) Efficient agroinfiltration-mediated transient GUS expression system for assaying different promoters in rice. Plant Biotechnol 20(3):235–239

    Article  CAS  Google Scholar 

  • Tsuchiya T, Eulgem T (2013) Mutations in EDM2 selectively affect silencing states of transposons and induce plant developmental plasticity. Sci Rep 3(1):1–9

    Article  Google Scholar 

  • Van der Weerden NL, Anderson MA (2013) Plant defensins: common fold, multiple functions. Fungal Biol Rev 26(4):121–131

    Article  Google Scholar 

  • Velásquez AC, Castroverde CDM, He SY (2018) Plant–pathogen warfare under changing climate conditions. Curr Biol 28(10):R619–R634

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol Biol 31(6):1129–1139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are greatly thankful to Dr. Indu B. Maiti, KTRDC, University of Kentucky, for providing the genetic materials for this research. We sincerely thank the Director, Institute of Life Sciences, for his interest and support in this study. We are sincerely thankful to Dr. Noohi Nasim and Dr. I. Sriram Sandeep for their kind technical help and support. We also thank Mr. Abhimanyu Das for his technical assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nrisingha Dey.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 329 KB)

Supplementary file2 (PDF 991 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, L., Deb, D., Khadanga, B. et al. Synthetic promoters from blueberry red ringspot virus (BRRV). Planta 253, 121 (2021). https://doi.org/10.1007/s00425-021-03624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03624-1

Keywords

Navigation