Skip to main content
Log in

Identification of two UDP-glycosyltransferases involved in the main oleanane-type ginsenosides in Panax japonicus var. major

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Two UDP-glycosyltransferases from Panax japonicus var. major were identified, and the biosynthetic pathways of three oleanane-type ginsenosides (chikusetsusaponin IVa, ginsenoside Ro, zingibroside R1) were elucidated.

Abstract

Chikusetsusaponin IVa and ginsenoside Ro are primary active components formed by stepwise glycosylation of oleanolic acid in five medicinal plants of the genus Panax. However, the key UDP-glycosyltransferases (UGTs) in the biosynthetic pathway of chikusetsusaponin IVa and ginsenoside Ro are still unclear. In this study, two UGTs (PjmUGT1 and PjmUGT2) from Panax japonicus var. major involved in the biosynthesis of chikusetsusaponin IVa and ginsenoside Ro were identified based on bioinformatics analysis, heterologous expression and enzyme assays. The results show that PjmUGT1 can transfer a glucose moiety to the C-28 carboxyl groups of oleanolic acid 3-O-β-d-glucuronide and zingibroside R1 to form chikusetsusaponin IVa and ginsenoside Ro, respectively. Meanwhile, PjmUGT2 can transfer a glucose moiety to oleanolic acid 3-O-β-d-glucuronide and chikusetsusaponin IVa to form zingibroside R1 and ginsenoside Ro. This work uncovered the biosynthetic mechanism of chikusetsusaponin IVa and ginsenoside Ro, providing the rational production of valuable saponins through synthetic biology strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

Abbreviations

OAGT:

Oleanolic acid glucuronosyltransferase

UGT:

Uridine diphosphate-dependent glycosyltransferases

RPKM:

Reads per kilobase per million mapped reads

Swp:

Swollen part for rhizome

Slp:

Slender part for rhizome

References

  • Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72(6):435–457

    Article  CAS  PubMed  Google Scholar 

  • Augustin JM, Drok S, Shinoda T, Biotech S (2012) UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol 160(4):1881–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayeleso TB, Matumba MG, Mukwevho E (2017) Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules 22(11):1915

    Article  PubMed Central  CAS  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genomics 13(1):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, Bitz O, Schwab W (2014) A UDP-glucose: monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome (Vitis vinifera L). Plant Physiol 165(2):561–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 3:929–939

    Article  Google Scholar 

  • Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69(6):1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Jiang WW, Jia B, Song WL, Zhao QM, Yang SC, Lu YC (2018) Saponin composition in different parts of rhizome of Panax japonicus var. major. J Chin Med Mater 41(7):1646–1650

    Google Scholar 

  • China Pharmacopoeia Committee (2015) Chinese Pharmacopoeia, vol I. China Medical Science and Technology Press, Beijing, pp 217–272

    Google Scholar 

  • Christensen LP (2009) Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99

    CAS  PubMed  Google Scholar 

  • Clement J, Clement E (2014) The medicinal chemistry of genus Aralia. Curr Top Med Chem 14(24):2783–2801

    Article  CAS  Google Scholar 

  • Cui J, Xi MM, Li YW, Duan JL, Wang L, Weng Y, Jia N, Cao SS, Li RL, Wang C, Zhao C, Wu Y, Wen AD (2015) Insulinotropic effect of chikusetsu saponin IVa in diabetic rats and pancreatic β-cells. J Ethnopharmacol 164:334–339

    Article  CAS  PubMed  Google Scholar 

  • Dahmer T, Berger M, Barlette AG, Segalin J, Verza S, Ortega GG, Gnoatto S, Guimarães J, Verli H, Gosmann G (2012) Antithrombotic effect of chikusetsusaponin IVa isolated from Ilex paraguariensis (Maté). J Med Food 15(12):1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5(9):221–233

    Article  Google Scholar 

  • Han JY, Kim HJ (2013) The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54(12):2034–2046

    Article  CAS  PubMed  Google Scholar 

  • Irmisch S, Jo S, Roach CR, Jancsik S, Yuen MMS, Madilao LL, O’Neil-Johnson M, Williams R, Withers SG, Bohlmann J (2018) Discovery of UDP-glycosyltransferases and BAHD-acyltransferases involved in the biosynthesis of the anti-diabetic plant metabolite montbretin A. Plant Cell 30(8):1864–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276(6):4350–4356

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Wang YH, Zhang XY, Peng T, Li YQ, Zhang Y (2012) Protective effect of ginsenoside Ro on anoxic and oxidative damage in vitro. Biomol Ther 20:544–549

    Article  CAS  Google Scholar 

  • Jung SC, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im TK, Lee JH, Choi G, Kim SC (2014) Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55(12):2177–2188

    Article  CAS  PubMed  Google Scholar 

  • Khorolragchaa A, Kim YJ, Rahimi S, Sukweenadhi J, Jang MG, Yang DC (2014) Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 536(1):186–192

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33:717–735

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Jin ML, Lee DY, Jetter R (2017) Characterization of the asiatic acid glucosyltransferase, UGT73AH1, involved in asiaticoside biosynthesis in Centella asiatica (L.) Urban. Int J Mol Sci 18(12):2630

    Article  PubMed Central  CAS  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuka Y (1998a) Beta-amyrin synthase—cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256(1):238–244

    Article  CAS  PubMed  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuka Y (1998b) Molecular cloning of oxidosqualene cyclase cDNA from Panax ginseng: the isogene that encodes beta-amyrin synthase. In: Ageta H, Aimi N, Ebizuka Y et al. (eds) Towards natural medicine research in the 21st century. Proc Int Symp Natural Medicines 1997, Kyoto, Japan, pp 421–427

  • Kwon HW (2019) Inhibitory effects of ginsenoside Ro on clot retraction through suppressing PI3K/Akt signaling pathway in human platelets. Prev Nutr Food Sci 24(1):56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Baldauf S, Lim EK, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276(6):4338–4343

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wei H, Qi L, Chen J, Ren M, Li P (2010) Characterization and identification of saponins in Achyranthes bidentata by rapid-resolution liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 24(20):2975–2985

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang T, Cui J, Jia N, Wu Y, Xi M, Wen A (2015) Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects. J Pharm Pharmacol 67(7):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhao S (2008) Progress in understanding of ginsenoside biosynthesis. Plant Biol 10(4):415–421

    Article  CAS  PubMed  Google Scholar 

  • Liang HC, Wang QH, Gong T, Du GH, Yang JL, Zhu P (2015) The basic strategies and research advances in the studies on glycosyltransferases involved in ginsenoside biosynthesis. Acta Pharm Sin 50(2):148–153

    CAS  Google Scholar 

  • Lim EK, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ (2002) The Activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277(1):586–592

    Article  CAS  PubMed  Google Scholar 

  • Lim EK, Higgins GS, Li Y, Bowles DJ (2003) Regioselectivity of glucosylation of caffeic acid by a UDP-glucose: glucosyltransferase is maintained in planta. Biochem J 373:987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 87(5):623–631

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhao SJ, Wang XS (2017a) Functional regulation of a UDP-glucosyltransferase gene (Pq3-O-UGT1) by RNA interference and overexpression in Panax quinquefolius. Plant Cell Tissue Organ Cult 129(3):445–456

    Article  CAS  Google Scholar 

  • Lu C, Zhao S, Wei G, Zhao H, Qu Q (2017b) Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius. Plant Physiol Biochem 111:67–76

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Yao L, Liu S, Hu Y, Wang S, Liang W, Huang L, Dai Y, Wang J, Gao W (2018) Characterization of UDP-glycosyltransferase involved in biosynthesis of ginsenosides Rh1 and Rd and identification of critical conserved amino acid residues for its function. J Agric Food Chem 66:9446–9455

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Samukawa K, Kubo M (1990) Anti-hepatitic activity of ginsenoside Ro. Planta Med 56:19–23

    Article  CAS  PubMed  Google Scholar 

  • Meesapyodsuk D, Balsevich J, Reed DW, Covello PS (2006) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143(2):959–969

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina MA, Modolo LV, Huhman DV, Urbanczyk-Wochniak E, Tang Y, Sumner LW, Dixon RA (2010) Genomic and co-expression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell 22(3):850–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi S, Kim J, Mijakovic I, Jung K, Kim YJ (2019) Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol Adv 37(7):107394

    Article  CAS  PubMed  Google Scholar 

  • Rattanathongkom A, Lee JB, Hayashi K, Sripanidkulchai B, Kanchanapoom T, Hayashi T (2009) Evaluation of chikusetsusaponin IVa isolated from Alternanthera philoxeroides for its potency against viral replication. Planta Med 75(8):829–835

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M, Nishimura K, Yasuyama N, Ebizuka Y (2010) Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett 584(11):2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li W, Fang F, Cui J, Cai B (2010) Study on quality standard for Panax japonicus var. major. J Najing Univ Tradit Chin Med 26(2):143–145

    CAS  Google Scholar 

  • Tang QY, Chen G, Song WL, Wei KH, He SM, Zhang GH, Tang JR, Li Y, Lin Y, Yang SC (2019) Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides. Planta 249(2):393–406

    Article  CAS  PubMed  Google Scholar 

  • Tang JR, Lu YC, Gao ZG, Song WL, Wei KH, Zhao Y, Tang QY, Li XJ, Chen JW, Zhang GH, Long GQ, Fan W, Yang SC (2020) Comparative transcriptome analysis reveals a gene expression profile that contributes to rhizome swelling in Panax japonicus var. major. Plant Biosyst 15(4):515–523

    Article  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580(22):5143–5149

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Sangwan RS, Sangwan NS (2016) Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol Adv 34:714–739

    Article  CAS  PubMed  Google Scholar 

  • Wang PP, Wei YJ, Fan Y, Liu QF, Wei W, Yang CS, Zhang L, Zhao GP, Yue JM, Yan X, Zhou ZH (2015) Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng 29:97–105

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Wang PP, Wei Y, Liu QF, Yang CS, Zhao GP, Yue JM, Yan X, Zhou ZH (2015) Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 8(9):1412–1424

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhou YQ, Sun C, Chen SL (2009) Progress in ginsenosides biosynthesis and prospect of the secondary metabolic engineering for the production of ginsenosides. China Biotechnol 29:102–108

    Google Scholar 

  • Xu GJ, Cai W, Gao W, Liu CS (2016) A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin. New Phytol 212(1):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Fan Y, Wei W, Wang PP, Liu QF, Wei YJ, Zhang L, Zhao GP, Yue JM, Zhou ZH (2014) Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res 24(6):770–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WZ, Hu Y, Wu WY, Ye M, Guo DA (2014) Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 106:7–24

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Lu J, Wang J, Gao WY (2020) Advances in biosynthesis of triterpenoid saponins in medicinal plants. Chin J Nat Med 18(6):417–424

    PubMed  Google Scholar 

  • Yuan CF, Liu CQ, Wang T, He YM, Zhou ZY, Dun YY, Zhao HX, Ren DM, Wang JJ, Zhang CC, Yuan D (2017) Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling. Oncotarget 8(19):31023–31040

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang SP, Wang G, Zuo T, Zhang XH, Xu R, Zhu WJ, You JM, Wang RF, Chen P (2012) Comparative transcriptome analysis of rhizome nodes and internodes in Panax japonicus var. major reveals candidate genes involved in the biosynthesis of triterpenoid saponins. Genomics 112(2):1112–1119

    Article  CAS  Google Scholar 

  • Zhang X, Xu X, Xu T (2015) Ginsenoside Ro suppresses interleukin-1 β-induced apoptosis and inflammation in rat chondrocytes by inhibiting NF-κB. Chin J Nat Med 13(4):283–289

    CAS  PubMed  Google Scholar 

  • Zheng JY, Zou K, Chen Q, Yuan D, Wang JZ, Liu ZX (2014) Study on quality standard for Panax japonicus rhizome. J Chin Med Mater 37(12):2192–2194

    CAS  Google Scholar 

  • Zhu S, Zou K, Fushimi H, Cai SQ, Komatsu K (2004) Comparative study on triterpene saponins of ginseng drugs. Planta Med 70(7):666–677

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Y, Yang GY, Chen XH, Liu Q, Zhang XL, Deng ZX, Feng Y (2017) Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab Eng 42:25–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R& D Plan (no. 2017YFC1702500), the Major Science and Technique Programs in Yunnan Province (Grant no. 2019ZF011-1), Yunnan Provincial Key Programs of Yunnan Eco-friendly Food International Cooperation Research Center Project under Grant (2019ZG00901), the Natural Science Foundation Project of Yunnan Province (202001AT070125) and the National Natural Sciences Foundation of China (31701854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Hao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JR., Chen, G., Lu, YC. et al. Identification of two UDP-glycosyltransferases involved in the main oleanane-type ginsenosides in Panax japonicus var. major. Planta 253, 91 (2021). https://doi.org/10.1007/s00425-021-03617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03617-0

Keywords

Navigation