Skip to main content
Log in

Structural and functional organization of the MYC transcriptional factors in Camellia sinensis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genome-wide identification, expression analysis of the MYC family in Camellia sinensis, and potential functional characterization of CsMYC2.1 have laid a solid foundation for further research on CsMYC2.1 in jasmonate (JA)-mediated response.

Abstract

Myelocytomatosis (MYC) of basic helix-loop-helix (bHLH) plays a major role in JA-mediated plant growth and developmental processes through specifically binding to the G-box in the promoters of their target genes. In Camellia sinensis, studies on the MYC gene family are limited. Here, we identified 14 C. sinensis MYC (CsMYC) genes, and further analyzed the evolutionary relationship, gene structure, and motif pattern among them. The expression patterns of these CsMYC genes in different tissues suggested their important roles in diverse function in tea plant. Four MYC transcription factors with the highest homology to MYC2 in Arabidopsis were localized in the nucleus. Two of them, named CsMYC2.1 and CsMYC2.2, exhibited transcriptional self-activating activity, and, therefore, could significantly activate the promoter containing G-box motif, whereas CsJAM1.1 and CsJAM1.2 lack the transcriptional self-activating activity, indirectly mediating the JA pathway through interacting with CsMYC2.1 and CsMYC2.2. Furthermore, Yeast Two-Hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays showed that CsMYC2.1 could interact with CsJAZ3/7/8 proteins. Genetically, the complementation of CsMYC2.1 in myc2 mutants conferred the ability to restore the sensitivity to JA signals. The results provide a comprehensive characterization of the 14 CsMYCs in C. sinensis, establishing a solid foundation for further research on CsMYCs in JA-mediated response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All supporting data can be found within the manuscript and its additional files.

Abbreviations

BiFC:

Bimolecular fluorescent complimentary

JA:

Jasmonate

JAM:

JASMONATE-ASSOCIATED MYC2-LIKE

JAZ:

JASMONATE-ZIM

Y2H:

Yeast two-hybrid

References

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr M, Lutts S, Hausman J-F, Guerriero G (2018) Jasmonic acid to boost secondary growth in hemp hypocotyl. Planta 2018:1029–1036

    Article  CAS  Google Scholar 

  • Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos ML, Yoshida Y, Major IT, de Oliveria FD, Weraduwage SM, Forehlich JE, Johnson BF, Kramer DM, Jander G, Sharkey TD, Howe GA (2016) Rewiring of jasmonate and phytochrome B signalling uncouples plant growth defense tradeoffs. Nat Commun 7:12570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153:1398–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang HL, Qi J, Li XG, Palme K, Li CY (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23:3335–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Chung HS, Cooke TF, Depew CL, Patel LC, Ogawa N, Kobayashi Y, Howe GA (2010) Alternative splicing expands the repertoire of dominant JA repression of jasmonate signaling. Plant J 63:613–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Wang YX, Liu ZW, Wang WL, Li H, Zhuang J (2018) Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Funct Integr Genom 18:489–503

    Article  CAS  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466

    Article  CAS  PubMed  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C (2017) MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger KE, Wigge PA (2017) The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol 175:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson AC, Pearce S, Band LR, Yang C, Ferjentsikova I, King J, Yuan Z, Zhang D, Wilson ZA (2017) Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytol 213:778–790

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández BG, Chico JM et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    Article  PubMed  Google Scholar 

  • Figueroa P, Browse J (2012) The Arabidopsis JAZ2 promoter contains a G-box and thymidine-Rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins. Plant Cell Physiol 53:330–343

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q (2020) ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Rep 39:273–288

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Goossens J, Swinnen G, Vanden Bossche R, Pauwels L, Goossens A (2015) Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. New Phytol 206:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Goossens J, Mertens J, Goossens A (2017) Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 68:1333–1347

    CAS  PubMed  Google Scholar 

  • He YQ, Zhang XY, Li LY, Sun ZT, Li JM, Chen XY, Hong GJ (2021) SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status dependent anthocyanin biosynthesis. New Phytol 230:205–217

    Article  CAS  PubMed  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  CAS  PubMed  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Yan SC (2018) MeJA is more effective than JA in inducing defense responses, Larix olgensis. Arthropod Plant Interact 12:49–56

    Article  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703

    Article  CAS  PubMed  Google Scholar 

  • Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141:1167–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q (2019) MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31:106–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Major IT, Yoshida Y, Campos ML, Kapali G, Xin XF, Sugimoto K, de Oliveira FD, He SY, Howe GA (2017) Regulation of growth-defence balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol 215:1533–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Figueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62:2143–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Miyamoto K, Nemoto K, Sawasaki T, Yamane H, Nojiri H, Okada K (2017) OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci Rep 7:40175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pater SD, Pham K, Memelink J, Kijne J (1997) RAP-1 is an Arabidopsis MYC-like R protein homologue, that binds to G-box sequence motifs. Plant Mol Biol 34:169–174

    Article  PubMed  Google Scholar 

  • Pattanaik S, Xie CH, Yuan L (2008) The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. Planta 227:707–715

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla JM, Solano R (2019) Jasmonate-related MYC transcription factor are functionally conserved in Marchantia polymorpha. Plant Cell 31:2491–2509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reyes-Díaz M, Lobos T, Cardemil L, Nunes NA, Retamales J, Jaakola L, Ribera FA (2016) Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits. Molecules 21:567–584

    Article  PubMed Central  CAS  Google Scholar 

  • Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K (2013) Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Lu X, Yan T, Fu X, Lv Z, Zhang F, Pan Q, Wang G, Sun X, Tang K (2016) The jasmonate responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2011) Tobacco MYC2 regulates jasmonate inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Strygina KV, Khlestkina EK (2017) Myc gene family in cereals: transformation in the course of the evolution of hexaploid bread wheat and its relatives. Mol Biol 51:772–779

    Article  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K (2016) Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice. Plant Cell Physiol 57:1814–1827

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yamaguchi SK, Mitsukawa N, Shibata D, Shinozaki K (1996) Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Mol Biol 32:571–576

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y et al (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115:E4151–E4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF (COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Li J, Ji J, Li P, Yu L, Abd Allah EF, Luo Y, Hu L, Hu X (2016) High temperature induces expression of tobacco transcription factor NtMYC2a to regulate nicotine and JA biosynthesis. Front Physiol 7:465

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z (2017) Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 8:1804

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YF, Zhang KK, Yang LY, Lv X, Wu Y, Liu HW, Lu Q, Chen DF, Qiu D (2018) Identification and characterization of MYC transcription factors in Taxus sp. Gene 675:1–8

    Article  CAS  Google Scholar 

  • Zhang HT, Hedhili S, Montiel G, Zhang YX, Chatel G, Pré M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Bokowiec MT, Rushton PJ, Han SC, Timko MP (2012) Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate inducible steps in nicotine biosynthesis. Mol Plant 5:73–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ke J, Zhang L, Chen R, Sugimoto K, Howe GA, Xu HE, Zhou M, He SY, Melcher K (2017a) Structural insights into alterative splicing mediated desensitization of jasmonate signaling. Proc Natl Acad Sci USA 114:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Chen Y, Nie L, Jin X, Fu C, Yu L (2017b) Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs. Gene 620:66–74

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Jiang XL, He YQ, Li LY, Xu P, Sun ZT, Li JM, Xu JM, Xia T, Hong GJ (2019) AtHB2, a class II HD-ZIP protein, negatively regulates the expression of CsANS, which encodes a key enzyme in Camellia sinensis catechin biosynthesis. Physiol Plant 166:936–945

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhao B, Fan Z, Yang D, Guo X, Wu Q, Yu B, Zhou S, Wang H (2020) Systematic identification of genes associated with plant growth defense tradeoffs under JA signaling in Arabidopsis. Planta 251:43

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zeng L, Hou X, Liao Y, Yang Z (2020) Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. J Exp Bot 71:2172–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (32000234, 31670291, 31800249), State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-prod- ucts (2010DS700124-ZZ1901, 2010DS700124-ZZ2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaojie Hong.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 848 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Kong, Y., Zhang, X. et al. Structural and functional organization of the MYC transcriptional factors in Camellia sinensis. Planta 253, 93 (2021). https://doi.org/10.1007/s00425-021-03607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03607-2

Keywords

Navigation