Skip to main content
Log in

Identification of qLG2, qLG8, and qWG2 as novel quantitative trait loci for grain shape and the allelic analysis in cultivated rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Three novel QTLs for grain shape were genetically fine mapped, with two of which to a 250-kb target interval on rice chromosome 2 that contains fourteen candidate genes.

Abstract

Grain shape (grain length, width, and thickness) determines crop yield and grain quality. However, the trait is regulated by numerous naturally occurring quantitative trait loci (QTLs) and the underlying mechanism remains largely unknown. Here, we report the genetic mapping of three new QTLs, qLG2, qWG2, and qLG8 that each exerts a semi-dominant effect on grain shape in cultivated rice. These QTLs were validated using populations derived from the corresponding chromosome segment substitution lines (CSSLs), and were further delimited to small genomic intervals in progeny testing experiments. Especially, qLG2/qWG2 was placed into an about 250-kb genomic candidate region, and 14 predicted ORFs localized within the interval. We also evaluated the individual and pyramiding genetic effect(s) of these QTL(s) using the corresponding nearly isogenic lines, and found that they have additive effects on the traits. Collectively, these findings provided useful information as a tool to improve grain shape in crop breeding programs and established foundations for future QTL cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CSSL:

Chromosome segment substitution line

NIL:

Near isogenic line

QTL:

Quantitative trait locus

SSR:

Simple sequence repeat

References

  • Che RH, Tong HN, Shi BH, Liu YQ, Fang SR, Liu DP, Xiao YH, Hu B, Liu LC, Wang HR, Zhao MF, Chu CC (2016) Control of grain size and rice yield by GL2-mediated brassinosteroid response. Nat Plant 2:15195–15201

    Article  CAS  Google Scholar 

  • Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L). Theor Appl Genet 95:553–567

    Article  CAS  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Mol Plant 10(5):685–694

    Article  CAS  Google Scholar 

  • Fan CC, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711

    Article  CAS  Google Scholar 

  • Godfray H, Beddington J, Crute I, Haddad L, Lawrence D, Muir J, Pretty J, Robinson S, Thomas S, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  Google Scholar 

  • Hu J, Wang YX, Fang YX, Zeng LJ, Xu J, Yu HP, Shi ZY, Pan JJ, Zhang D, Kang SJ, Zhu L, Dong GJ, Guo LB, Zeng DL, Zhang GH, Xie LH, Xiong GS, Li JY, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465

    Article  CAS  Google Scholar 

  • Khush G (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Green O, Abranamson J, Barlow A, Daley MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  Google Scholar 

  • Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat genet 43:1266–1269

    Article  CAS  Google Scholar 

  • Lincoln S, Dalyand M, Lander E (1993) Mapping genes controlling quantitative traits with Mapmaker/QTL1.1: a tutorial and reference manual, 2nd edn. Whitehead Institute Technical Report, Cambridge, Massachusetts

  • Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM (2017) GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plant 3:17043

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  Google Scholar 

  • Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang LW, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3. Cell Res 22:1666–1680

    Article  CAS  Google Scholar 

  • Shi CL, Ren YL, Liu LL, Wang F, Zhang H, Tian P, Pan T, Wang YF, Jing RN, Liu TZ, Wu FQ, Lin QB, Lei CL, Zhang X, Zhu SS, Guo XP, Wang JL, Zhao ZC, Wang J, Zhai HQ, Cheng ZJ, Wan JM (2019) Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol 180:381–391

    Article  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  Google Scholar 

  • Song XJ, Ashikari M (2008) Toward an optimum return from crop plants. Rice 1:135–143

    Article  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  Google Scholar 

  • Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu JZ, Kitano H, Sakakibara H, Jacobsen ES, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci USA 112:76–81

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  Google Scholar 

  • Wang SK, Li S, Liu Q, Wu K, Zhang JQ, Wang SS, Wang Y, Chen XB, Zhang Y, Gao CX, Wang F, Huang HX, Fu XD (2015a) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954

    Article  CAS  Google Scholar 

  • Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  Google Scholar 

  • Wang YH, Li JY (2011) Branching in rice. Curr Opin Plant Biol 14:94–99

    Article  CAS  Google Scholar 

  • Wang YX, Xiong GS, Hu J, Jiang L, Yu H, Xu J, Fang YX, Zeng LJ, Xu EB, Xu J, Ye WJ, Meng XB, Liu RF, Chen HQ, Jing YH, Wang YH, Zhu XD, Li JY, Qian Q (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948

    Article  CAS  Google Scholar 

  • Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  CAS  Google Scholar 

  • Xia D, Zhou H, Liu RJ, Dan WH, Li PB, Wu B, Chen JX, Wang LQ, Gao GJ, Zhang QL, He YQ (2018) GL3.3, a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to produce extra-long grains. Mol Plant 11:754–756

    Article  CAS  Google Scholar 

  • Xing YZ, Zhang QF (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  Google Scholar 

  • Ying JZ, Ma M, Bai C, Huang XH, Liu JL, Song XJ (2018) TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant 11:750–753

    Article  CAS  Google Scholar 

  • Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109:21534–21539

    Article  CAS  Google Scholar 

  • Zhang WH, Sun PY, He Q, Shu F, Wang J, Deng HF (2013) Fine mapping of GS2, a dominant gene for big grain rice. Crop J 2:160–165

    Article  Google Scholar 

  • Zuo JR, Li JY (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0100402), the National Natural Science Foundation of China (91735302, 91435113, and 31471466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Jun Song.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GJ., Wang, Y., Ying, JZ. et al. Identification of qLG2, qLG8, and qWG2 as novel quantitative trait loci for grain shape and the allelic analysis in cultivated rice. Planta 252, 18 (2020). https://doi.org/10.1007/s00425-020-03420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03420-3

Keywords

Navigation