Skip to main content
Log in

MicroRNA-mediated responses to colchicine treatment in barley

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In Hordeum vulgare, nine differentially expressed novel miRNAs were induced by colchicine. Five novel miRNA in colchicine solution showed the opposite expression patterns as those in water.

Abstract

Colchicine is a commonly used agent for plant chromosome set doubling. MicroRNA-mediated responses to colchicine treatment in plants have not been characterized. Here, we characterized new microRNAs induced by colchicine treatment in Hordeum vulgare using high-throughput sequencing. Our results showed that 39 differentially expressed miRNAs were affected by water treatment, including 34 novel miRNAs and 5 known miRNAs; 42 miRNAs, including 37 novel miRNAs and 5 known miRNAs, were synergistically affected by colchicine and water, and 9 differentially expressed novel miRNAs were induced by colchicine. The novel_mir69, novel_mir57, novel_mir75, novel_mir38, and novel_mir56 in colchicine treatment showed the opposite expression patterns as those in water. By analyzing these 9 differentially expressed novel miRNAs and their targets, we found that novel_mir69, novel_mir56 and novel_mir25 co-target the genes involving the DNA repair pathway. Based on our results, microRNA-target regulation network under colchicine treatment was proposed, which involves actin, cell cycle regulation, cell wall synthesis, and the regulation of oxidative stress. Overall, the results demonstrated the critical role of microRNAs mediated responses to colchicine treatment in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HV0:

Barley, untreated

HV5CK:

Barley, 5 h water treatment

HV5TR:

Barley, 5 h colchicine treatment

NFYA5:

Nuclear factor YA family

TPM:

Transcripts per million

References

  • Alves CS, Vicentini R, Duarte GT, Pinoti VF, Vincentz M, Nogueira FTS (2016) Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol Biol 93(1–2):1–14

    Google Scholar 

  • Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW (2019) Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs. Plant Cell 31(2):315–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15(1):293

    Google Scholar 

  • Barnabás B, Obert B, Kovács G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anther. Plant Cell Rep 18(10):858–862

    Google Scholar 

  • Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196(1):149–161

    CAS  PubMed  Google Scholar 

  • Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants: by treatment with colchicine. J Hered 28(12):393–411

    CAS  Google Scholar 

  • Chen H, Han R (2015) F-actin participates in the process of the “partition-bundle division”. Russ J Plant Physiol 62(2):187–194

    CAS  Google Scholar 

  • Chen C-J, Qing L, Yu-Chan Z, Liang-Hu Q, Yue-Qin C, Daniel G (2011) Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8(3):538–547

    CAS  PubMed  Google Scholar 

  • Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235(2):375–386

    CAS  PubMed  Google Scholar 

  • Cognat V, Morelle G, Megel C, Lalande S, Molinier J, Vincent T, Small I, Duchêne AM, Maréchaldrouard L (2017) The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 45(6):3460–3472

    CAS  PubMed  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavacka A, Šamaj J, Friml J, Gadella TW Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10(1):137–150

    CAS  PubMed  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104(3):359–373

    Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2009) Genome size in natural and synthetic autopolyploids and in a natural segmental allopolyploid of several Triticeae species. Genome 52(3):275–285

    CAS  PubMed  Google Scholar 

  • Evers M, Huttner M, Dueck A, Meister G, Engelmann JC (2015) miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinform 16(1):370

    Google Scholar 

  • Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y (2010) Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol 48(5):407–414

    CAS  Google Scholar 

  • Gao R, Wang H, Dong B, Yang X, Chen S, Jiang J, Zhang Z, Liu C, Zhao N, Chen F (2016) Morphological, genome and gene expression changes in newly induced autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino. Int J Mol Sci 17(10):1690

    PubMed Central  Google Scholar 

  • Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P (2012) A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 20(2):109–125

    PubMed  PubMed Central  Google Scholar 

  • Hastie SB (1991) Interactions of colchicine with tubulin. Pharmacol Therapeut 51(3):377–401

    CAS  Google Scholar 

  • Heinz DJ, Mee GW (1970) Colchicine-induced polyploids from cell suspension cultures of sugarcane. Crop Sci 10(6):696–699

    Google Scholar 

  • Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151(5):2120–2132

    PubMed  PubMed Central  Google Scholar 

  • Iwakawa H-O, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52(4):591–601

    CAS  PubMed  Google Scholar 

  • Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71(1–2):51–59

    CAS  PubMed  Google Scholar 

  • Jürgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    PubMed  Google Scholar 

  • Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci 6:506

    PubMed  PubMed Central  Google Scholar 

  • Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Develop Cell 24(2):125–132

    CAS  Google Scholar 

  • Leblanc O, Duenas M, Hernandez M, Bello S, Garcia V, Berthaud J, Savidan Y (1995) Chromosome doubling in Tripsacum: the production of artificial, sexual tetraploid plants. Plant Breed 114(3):226–230

    Google Scholar 

  • Lénárt P, Bacher CP, Daigle N, Hand AR, Eils R, Terasaki M, Ellenberg J (2005) A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436(7052):812

    PubMed  Google Scholar 

  • Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147(1):316–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lew DJ, Kornbluth S (1996) Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8(6):795–804

    CAS  PubMed  Google Scholar 

  • Li W, Hu D-n, Li H, Chen X-Y (2007) Polyploid induction of Lespedeza formosa by colchicine treatment. Forest Stud China 9(4):283–286

    Google Scholar 

  • Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Sun G (2017) microRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor. Plant J 91(1):57–69

    CAS  PubMed  Google Scholar 

  • Liu G, Li Z, Bao M (2007) Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157(1–2):145–154

    Google Scholar 

  • Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H (2009) The Argonaute10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58(1):27–40

    CAS  PubMed  Google Scholar 

  • Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2007) Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci 172(5):970–977

    CAS  Google Scholar 

  • Martinez G, Choudury SG, Slotkin RK (2017) tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res 45(9):5142–5152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima Y, Suzuki S (2013) Environmental stresses induce misfolded protein aggregation in plant cells in a microtubule-dependent manner. Intl J Mol Sci 14(4):7771–7783

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436

    CAS  PubMed  Google Scholar 

  • Nebel BR (1937) Mechanism of polyploidy through colchicine. Nature 140(3556):1101

    Google Scholar 

  • Nogales E, Wolf S, Downing K (1998) Structure of the ab tubulin dimer by electron crystallography (Correction). Nature 393(6681):191

    CAS  Google Scholar 

  • Pan W, Houben A, Schlegel R (1993) Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicine. Genome 36(2):387–390

    CAS  PubMed  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186(1):5–17

    CAS  PubMed  Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K, Forkmann G (2002) In vitro chromosome doubling of Miscanthus sinensis. Plant Breed 121(5):445–450

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raina SN, Parida A, Koul KK, Salimath SS, Bisht MS, Raja V, Khoshoo TN (1994) Associated chromosomal DNA changes in polyploids. Genome 37(4):560–564

    CAS  PubMed  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37(5):1059–1073

    CAS  PubMed  Google Scholar 

  • RStudio Team (2015) RStudio: Integrated development for R. RStudio, Inc., Boston, MA (Computer software v0.98.1074), http://www.rstudio.com/. Accessed 30 Jan 2019

  • Santos J, Alfaro D, Sanchez-Moran E, Armstrong S, Franklin F, Jones G (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165(3):1533–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotech 39(4):519–525

    CAS  Google Scholar 

  • Smertenko A, Franklin-Tong VE (2011) Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differ 18(8):1263–1270. https://doi.org/10.1038/cdd.2011.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2(1):33

    CAS  PubMed  Google Scholar 

  • Sourour AR, Ameni B, Mejda C (2014) Efficient production of tetraploid barley (Hordeum vulgare L.) by colchicine treatment of diploid barley. J Exp Biol Agric Sci 2:113–119

    CAS  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible W-R, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26(4):1792–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Girke T, Zhu J-K (2005) Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res 33(14):4443–4454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(9):2415

    CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115–e115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-J, Guo H-S (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27(3):574–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Wang Y, Xie Z, Guo D, Chen C, Fan Q, Deng X, Liu JH (2018) Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in Poncirus trifoliata. Plant Biotech J. https://doi.org/10.1111/pbi.13064

    Article  Google Scholar 

  • Wignarajah K, Greenway H, John AD (1976) Effect of waterlogging on growth and activity of alcohol dehydrogenase in barley and rice. New Phytol 77(3):585–592

    CAS  Google Scholar 

  • Winter J, Diederichs S (2011) Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol 8(6):1149–1157

    CAS  PubMed  Google Scholar 

  • Xu Q, He Q, Li S, Tian Z (2014) Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance. Acta Physiol Plant 36(7):1841–1851

    CAS  Google Scholar 

  • Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36(12):2207–2218

    CAS  PubMed  Google Scholar 

  • Yu M, Yuan M, Ren H (2006) Visualization of actin cytoskeletal dynamics during the cell cycle in tobacco (Nicotiana tabacum L. cv Bright Yellow) cells. Biol Cell 98(5):295–306

    CAS  PubMed  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230(1):1–15

    PubMed  Google Scholar 

  • Zhang J, Zhang M, Deng X (2007) Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell Tissue Organ Cult 89(2–3):211

    Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotech Lett 33(2):403–409

    CAS  Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190(4):906–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Fleet P, Nevo E, Zhang X, Sun G (2017) Transcriptome analysis reveals plant response to colchicine treatment during on chromosome doubling. Sci Rep 7(1):8503

    PubMed  PubMed Central  Google Scholar 

  • Zhou K, Liu B, Wang Y, Zhang X, Sun G (2019) Evolutionary mechanism of genome duplication enhancing natural autotetraploid sea barley adaptability to drought stress. Environ Exp Bot 159:44–54

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2017YFD0301304) and the international Science and Technology Cooperation Projects of Anhui Province (1704e1002232) to DW, a Research Foundation for Talented Scholars from Anhui Agricultural University and the introduced leading talent research team for Universities in Anhui Province, the Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05433) to GS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Yu Wang, De-Xiang Wu or Genlou Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, FY., Liu, L., Yu, Y. et al. MicroRNA-mediated responses to colchicine treatment in barley. Planta 251, 44 (2020). https://doi.org/10.1007/s00425-019-03326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-019-03326-9

Keywords

Navigation