Skip to main content
Log in

Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Drought tolerance was greater in the whole lichen than in its isolated photobiont. Cell turgor state has an influence on the functionality of photosynthetic process in lichens.

Irreversible thermodynamics is widely used to describe the water relations of vascular plants. However, poikilohydrous organisms like lichens and aeroterrestrial microalgae have seldom been studied using this approach. Water relations of lichens are generally addressed without separate analysis of the mycobiont and photobiont, and only few studies have correlated changes in photosynthetic efficiency of dehydrating lichens to accurate measurements of their water potential components. We measured water potential isotherms and chlorophyll a fluorescence in the lichen Flavoparmelia caperata harvested in different seasons, as well as in its isolated photobiont, the green alga Trebouxia gelatinosa, either exposed to water stress cycles or fully hydrated. No significant seasonal trends were observed in lichen water relations parameters. Turgor loss point and osmotic potential of the whole thallus were significantly lower than those measured in the photobiont, while differences between the water stressed photobiont and controls were not significant. Dehydration-induced drop of F v/F m was correlated with turgor loss, revealing that the photosynthetic activity of lichens partly depends on their turgor level. We provided one of the first quantitative evidences of the influence that turgor status could exert on the functionality of photosynthetic processes in lichens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadjian V (1973) Methods of isolation and culturing lichen symbionts and thalli. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 653–659

    Chapter  Google Scholar 

  • Alam MA, Gauslaa Y, Solhaug KA (2015) Soluble carbohydrates and relative growth rates in chloro-, cyano- and cephalolichens: effects of temperature and nocturnal hydration. New Phytol 208:750–762

    Article  CAS  PubMed  Google Scholar 

  • Aranda I, Gil L, Pardos J (1996) Seasonal water relations of three broadleaved species (Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd.) in a mixed stand in the centre of the Iberian Peninsula. For Ecol Manag 84:219–229

    Article  Google Scholar 

  • Barták M, Trnková K, Hansen ES (2015) Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biol Plant 59:357–365

    Article  Google Scholar 

  • Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15:393–405

    Article  PubMed  Google Scholar 

  • Bartlett MK, Zhang Y, Kreidler N, Sun S, Ardy R, Cao K, Sack L (2014) Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol Lett 17:1580–1590

    Article  PubMed  Google Scholar 

  • Baruffo L, Tretiach M (2008) Seasonal variation of F o, F m, and F v/F m in an epiphytic population of the lichen Punctelia subrudecta (Nyl.) Krog. Lichenologist 39:555–565

    Article  Google Scholar 

  • Beckett RP (1995) Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Ann Bot 76:211–217

    Article  Google Scholar 

  • Beckett RP (1996) Some aspects of the water relations of the lichen Parmotrema tinctorum measured using thermocouple psychrometry. Lichenologist 28:257–266

    Google Scholar 

  • Bidussi M, Gauslaa Y, Solhaug KA (2013) Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. Planta 237:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Binks O, Meir P, Rowland L, da Costa ACL, Vasconcelos SS, de Oliveira AAR, Ferreira L, Christoffersen B, Nardini A, Mencuccini M (2016) Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought. New Phytol 211:477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Candotto Carniel F, Gerdol M, Montagner A, Banchi E, De Moro G, Manfrin C, Muggia L, Pallavicini A, Tretiach M (2016) New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Mol Biol 91:319–339

    Article  Google Scholar 

  • Casolo V, Tomasella M, De Col V, Braidot E, Savi T, Nardini A (2015) Water relations of an invasive halophyte (Spartina patens): osmoregulation and ionic effects on xylem hydraulics. Funct Plant Biol 42:264–273

    CAS  Google Scholar 

  • Centeno DC, Hell AF, Braga MR, del Campo EM, Casano LM (2016) Contrasting strategies used by lichen microalgae to cope with desiccation–rehydration stress revealed by metabolite profiling and cell wall analysis. Environ Microbiol 18:1546–1560

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1981) Analysis of the dynamic and steady-state responses of growth rate and turgor pressure to changes in cell parameters. Plant Physiol 68:1439–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Coxson DS (1991) Impendance measurement of thallus moisture content in lichens. Lichenologist 23:74–84

    Article  Google Scholar 

  • Ding Y, Zhang Y, Zheng QS, Tyree MT (2014) Pressure–volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol 203:378–387

    Article  PubMed  Google Scholar 

  • Domaschke S, Vivas M, Sancho LG, Printzen C (2013) Ecophysiology and genetic structure of polar versus temperate populations of the lichen Cetraria aculeata. Oecologia 173:699–709

    Article  CAS  PubMed  Google Scholar 

  • Dudley SA, Lechowicz MJ (1987) Losses of polyol through leaching in subarctic lichens. Plant Physiol 83:813–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanjul L, Rosher PH (1984) Effects of water stress on internal water relations of apple leaves. Physiol Plant 46:109–114

    Google Scholar 

  • Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Green TGA, Lange OL, Cowan IR (1994) Ecophysiology of lichen photosynthesis: the role of water status and thallus diffusion resistances. Cryptogam Bot 4:166–178

    Google Scholar 

  • Gupta AS, Berkowitz GA (1987) Osmotic adjustment, symplast volume, and nonstomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 85:1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hájek J, Barták M, Dubová J (2006) Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biol Plant 50:624–634

    Article  Google Scholar 

  • Honegger R (1993) Developmental biology of lichens. New Phytol 125:659–677

    Article  Google Scholar 

  • Honegger R (2006) Water relations in lichens. In: Gadd G, Watkinson SC, Dyer PS (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 185–200

    Google Scholar 

  • Jensen M, Chakir S, Feige GB (1999) Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physoides, Lobaria pulmonaria and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37:393–404

    Article  CAS  Google Scholar 

  • Jonsson Čabrajić AV, Lidén M, Lundmark T, Ottosson-Löfvenius M, Palmqvist K (2010) Modelling hydration and photosystem II activation in relation to in situ rain and humidity patterns: a tool to compare performance of rare and generalist epiphytic lichens. Plant Cell Environ 33:840–850

    Google Scholar 

  • Jonsson AV, Moen J, Palmqvist K (2008) Predicting lichen hydration using biophysical models. Oecologia 156:259–273

    Article  PubMed  Google Scholar 

  • Kaiser WM (1982) Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-, meso- and xerophytes under osmotic stress. Planta 154:538–545

    Article  CAS  PubMed  Google Scholar 

  • Kappen L, Sommerkorn M, Schroeter B (1995) Carbon acquisition and water relations of lichens in polar regions—potentials and limitations. Lichenologist 27:531–545

    Google Scholar 

  • Kershaw KA, Macfarlane JD (1980) Physiological–environmental interactions in lichens. New Phytol 84:687–702

    Article  Google Scholar 

  • Kosugi M, Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50:879–888

    Article  CAS  PubMed  Google Scholar 

  • Kosugi M, Shizuma R, Moriyama Y, Koike H, Fukunaga Y, Takeuchi A, Uesugi K, Suzuki Y, Imura S, Kudoh S, Miyazawa A, Kashino Y, Satoh K (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166:337–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci 102:3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lajos K, Mayr S, Buchner O, Blaas K, Holzinger A (2016) A new microscopic method to analyse desiccation-induced volume changes in aeroterrestrial green algae. J Microsc 263:192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 75:494–501

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Pfanz H, Kilian E, Meyer A (1990) Effect of low water potential on photosynthesis in intact lichens and their liberated algal components. Planta 182:467–472

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rain forest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95:303–313

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2003) Water Relations. In: Larcher W (ed) Physiological plant ecology—ecophysiology and stress. Springer, Berlin, pp 231–286

    Chapter  Google Scholar 

  • Larson DW (1981) Differential wetting in some lichens and mosses: the role of morphology. Bryologist 84:1–15

    Article  Google Scholar 

  • Lenz TI, Wright IJ, Westoby M (2006) Interrelations among pressure–volume curve traits across species and water availability gradients. Physiol Plant 127:423–433

    Article  CAS  Google Scholar 

  • Lidén M, Jonsson Čabrajič AV, Ottoson-Löfvenius M, Palmqvist K, Lundmark T (2010) Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens. Plant Cell Environ 33:851–862

    PubMed  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S, Trifilò P, Lo Gullo MA (2003) Water relations and hydraulic characteristics of three woody species co-occurring in the same habitat. Ann For Sci 60:297–305

    Article  Google Scholar 

  • Nardini A, Marchetto A, Tretiach M (2013) Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecol 6:397–407

    Article  Google Scholar 

  • Nash TH, Lange OL (1988) Responses of lichens to salinity: concentration and time-course relationships and variability among Californian species. New Phytol 109:361–367

    Article  Google Scholar 

  • Nash TH, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 116:269–276

    Article  Google Scholar 

  • Oliver MJ, Bewley JD (1997) Desiccation-tolerance of plant tissues: a mechanistic overview. Hortic Rev 18:171–217

    Google Scholar 

  • Pellegrini E, Bertuzzi S, Candotto Carniel F, Lorenzini G, Nali C, Tretiach M (2014) Ozone tolerance in lichens: a possible explanation from biochemical to physiological level using Flavoparmelia caperata as test organism. J Plant Physiol 171:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Piccotto M, Bidussi M, Tretiach M (2011) Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Env Exp Bot 73:102–107

    Article  CAS  Google Scholar 

  • Proctor MCF (2010) Recovery rates of chlorophyll-fluorescence parameters in desiccation tolerant plants: fitted logistic curves as a versatile and robust source of comparative data. Plant Growth Regul 62:233–240

    Article  CAS  Google Scholar 

  • Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349

    Article  Google Scholar 

  • Rundel PW (1982) The role of morphology in the water relations of desert lichens. J Hattori Bot Lab 53:315–320

    Google Scholar 

  • Saito T, Terashima I (2004) Reversible decreases in the bulk elastic modulus of mature leaves of deciduous Quercus species subjected to two drought treatments. Plant Cell Environ 27:863–875

    Article  Google Scholar 

  • Sancho LG, de la Torre R, Horneck G, Ascaso C, de los Rios A, Pintado A, Werzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454

    Article  PubMed  Google Scholar 

  • Savi T, Marin M, Luglio J, Petruzzellis F, Mayr S, Nardini A (2016) Leaf hydraulic vulnerability protects stem functionality under drought stress in Salvia officinalis. Funct Plant Biol 43:370–379

    Article  CAS  Google Scholar 

  • Scheidegger C, Schroeter B, Frey B (1995) Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197:399–409

    Article  CAS  Google Scholar 

  • Schlensog M, Green TGA, Schroeter B (2013) Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia 173:59–72

    Article  PubMed  Google Scholar 

  • Schulte PJ (1992) The units of currency for plant water status. Plant Cell Environ 15:7–10

    Article  Google Scholar 

  • Smith D, Molesworth S (1973) Lichen physiology XIII. Effects of rewetting dry lichens. New Phytol 72:525–533

    Article  Google Scholar 

  • Tretiach M, Pecchiari M (1995) Gas exchange rates and chlorophyll content of epi- and endolithic lichens from the Trieste Karst. New Phytol 130:585–592

    Article  Google Scholar 

  • Tretiach M, Crisafulli P, Virgilio D, Baruffo L, Jensen M (2003) Seasonal variation of photoinhibition in an epiphytic population of the lichen Parmelia sulcata Taylor. Bibl Lichenol 86:313–327

    Google Scholar 

  • Tretiach M, Adamo P, Bargagli R, Baruffo L, Carletti L, Crisafulli P, Giordano S, Modenesi P, Orlando S, Pittao E (2007) Lichen and moss bags as monitoring devices in urban areas. Part I: influence of exposure on sample vitality. Environ Pollut 146:380–391

    Article  CAS  PubMed  Google Scholar 

  • Tretiach M, Bertuzzi S, Salvadori O (2010) Chlorophyll a fluorescence as a practical tool for checking the effects of biocide treatments on endolithic lichens. Int Biodeterior Biodegrad 64:452–460

    Article  CAS  Google Scholar 

  • Tretiach M, Pavanetto S, Pittao E, Sanità di Toppi L, Piccotto M (2012) Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia 168:589–599

    Article  PubMed  Google Scholar 

  • Tretiach M, Bertuzzi S, Candotto Carniel F, Virgilio D (2013) Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia 173:649–663

    Article  PubMed  Google Scholar 

  • Tyree MT, Hammel HT (1972) The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J Exp Bot 23:266–282

    Article  Google Scholar 

  • Váczi P, Barták M (2006) Photosynthesis of lichen symbiotic alga Trebouxia erici as affected by irradiance and osmotic stress. Biol Plant 50:257–264

    Article  Google Scholar 

  • Vráblíková H, McEvoy M, Solhaug KA, Barták M, Gauslaa Y (2006) Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J Photochem Photobiol B Biol 83:151–162

    Article  Google Scholar 

  • Wu L, Lan S, Zhang D, Hu C (2013) Functional reactivation of photosystem II in lichen soil crusts after long-term desiccation. Plant Soil 369:177–186

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kinoshita Y, Yoshimura I (2002) Photobiont culturing. In: Kranner I, Beckett R, Varma A (eds) Protocols in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Springer, Berlin, pp 34–42

    Google Scholar 

  • Zhang L, Li Y, Liu J (2016) Complete inactivation of photosynthetic activity during desiccation and rapid recovery by rehydration in the aerial microalga Trentepohlia jolithus. Plant Biol 18:1058–1061

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Petruzzellis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petruzzellis, F., Savi, T., Bertuzzi, S. et al. Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont. Planta 247, 705–714 (2018). https://doi.org/10.1007/s00425-017-2814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2814-5

Keywords

Navigation