Skip to main content

Lichen Photosynthesis. Scaling from the Cellular to the Organism Level

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

Photosynthesis in lichens is intimately linked to the photosynthetic capacities of the photobiont, i.e. autotrophic algae and cyanobacteria, that form the lichen association together with a fungal partner. Lichen photosynthesis in nature is also affected by a complex mixture of internal and external factors.

Intrathalline locatization of photobiont cells, structure of photobiont layer, functional photobiont-mycobiont interlink, and physico-chemical properties of the fungal part of thallus are considered important internal characteristics affecting photosynthesis and utilization of photosynthetic products in lichens. In this chapter, a brief introduction into the anatomy and morphology is provided from a view point of function. Special attention is given to cellular structure of photobionts, and especially to the chloroplast of unicellular alga Trebouxia, the most abundant symbiotic alga in lichen association. Since lichens are typical poikilohydric organism with no active control of their hydration status, the photosynthetic responses of lichens to full, partial and severely limited water supply are described. In addition the protective mechanisms activated during thallus desiccation are discussed. Several aspects of lichen photosynthesis including light-response curves, photoinhibition, activation of photoprotective mechanisms and reactive oxygen species-induced changes in the amount and activity of antioxidative substances are reviewed. Lichens can photosynthesize over a wide temperature range, including subzero temperature. The photobiont also exhibits response depending on nitrogen availability and exposure to heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

– Ascorbate peroxidase;

CA:

– Carbonic anhydrase;

CAT:

– Catalase;

CCM:

– Carbon concentrating mechanism;

DEPS:

– Deepoxidation state of xantophyll-cycle pigments;

DW:

– Dry weight;

Fo:

– Background chlorophyll fluorescence;

Fm :

– Maximal fluorescence yield;

Fv :

– Variable chlorophyll fluorescence;

Fv/Fm :

– Potential quantum yield of photochemical processes in photosystem II;

FW:

– Fresh weight;

GSH:

– Reduced glutathione;

GSSG:

– Oxidised glutathione;

NPQ:

– Non-photochemical quenching;

PAR:

– Photosynthetically active radiation;

Pn:

– Net photosynthesis;

Pnmax :

– Maximum rate of net photosynthesis;

PSII:

– Photosystem II;

ϕPSII :

– Effective quantum yield of photochemical processes in photosystem II;

qE:

– Energy dependendt quenching;

qI:

– Photoinhibitory quenching;

qT:

– State 1-state 2 transition quenching;

ROS:

– Reactive oxygen species;

RuBisCo:

– Ribulose bis phosphate carboxylase oxygenase;

RWC:

– Relative water contents;

SOD:

– Superoxid dismutase;

UV-A:

– Ultraviolet radion (B);

UV-B:

– Ultraviolet radion (B);

WP:

– Water potential

References

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, Chichester, 250p

    Google Scholar 

  • Ahmadjian V (2001) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis. Mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 373–383

    Google Scholar 

  • Archibald PA (1977) Physiological characteristics of Trebouxia (Chlorophyceae, Chlorococcales) and Pseudotrebouxia (Chlorophyceae, Chlorosarcinales). Phycologia 16:295–300

    Article  Google Scholar 

  • Ascaso C, Brown HD, Rapsch S (1988) The effect of desiccation on pyrenoid structure in the oceanic lichen Parmelia laevigata. Lichenologist 20:31–39

    Article  Google Scholar 

  • Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bačkor M, Fahselt D (2008) Lichen photobionts and metal toxicity. Symbiosis 46:1–10

    Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222

    Article  Google Scholar 

  • Bačkor M, Kováčik J, Dzubaj A, Bačkorová M (2009) Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regul 58:279–286

    Article  Google Scholar 

  • Barták M, Hájek J, Gloser J (2000) Heterogeneity of chlorophyll fluorescence over thalli of several foliose macrolichens exposed to adverse environmental factors: interspecific differences as related to thallus hydration and high irradiance. Photosynthetica 38:531–537

    Article  Google Scholar 

  • Barták M, Gloser J, Hájek J (2005) Visualized photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. Lichenologist 37:433–443

    Article  Google Scholar 

  • Barták M, Solhaug KA, Vráblíková H, Gauslaa Y (2006) Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. Oecologia 149:553–560

    Article  PubMed  Google Scholar 

  • Barták M a, Váczi P, Hájek J, Smykla J (2007) Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biol 31:47–51

    Article  Google Scholar 

  • Barták M, Vráblíková-Cempírková H, Štepigová J, Hájek J, Váczi P, Večeřová K (2008) Duration of irradiation rather than quantity and frequency of high irradiance inhibits photosynthetic processes in the lichen Lasallia pustulata. Photosynthetica 46:161–169

    Article  Google Scholar 

  • Barták M, Hájek J, Očenášová P (2012) Photoinhibition of photosynthesis in Antarctic lichen Usnea antarctica. I. Light intensity- and light duration-dependent changes in functioning of photosystem II. Czech Polar Rep 2:42–51

    Article  Google Scholar 

  • Beckett RP, Brown DH (1983) Natural and experimentally-induced zinc and copper resistance in the lichen genus Peltigera. Ann Bot 52:43–50

    CAS  Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685

    Article  CAS  PubMed  Google Scholar 

  • Büdel B, Scheidegger C (1996) Thallus morphology and anatomy. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 37–64

    Google Scholar 

  • Buffoni Hall RS, Bornman JF, Bjorn LO (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. Mitis. J Photochem Photobiol B 66:13–20

    Article  CAS  PubMed  Google Scholar 

  • Burritt DJ, Mackenzie S (2003) Antioxidant metabolism during acclimation of Begonia × erythrophylla to high light levels. Ann Bot 91:783–794

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A, Deltoro VI, Barreno E, del Valle-Tascon S (1997) Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol Plant 101:93–102

    Article  CAS  Google Scholar 

  • Charles HC (2011) The physiological response of sub-Arctic lichens to their abiotic environment. Masters thesis, Durham

    Google Scholar 

  • Dahlman L, Persson J, Näsholm T, Palmqvist K (2003) Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. Planta 217:41–48

    CAS  PubMed  Google Scholar 

  • Davis WC, Gries C, Nash TH III (2000) The ecophysiological response of the aquatic lichen Hydrothyria venosa to nitrate in terms of weight and photosynthesis over long periods of time. Biblio Lichenol 75:201–208

    Google Scholar 

  • Davis WC, Gries C, Nash TH III (2002) The influence of temperature on the weight and net photosynthesis of the aquatic lichen Peltigera hydrothyria over long periods of time. Biblio Lichenol 83:233–242

    Google Scholar 

  • de la Torre R, Sancho LG, Horneck G, de los Ríos A, Wierzchos J, Olsson-Francis K, Cockell CS, Rettberg P, Berger T, de Vera J-PP, Ott S, Frías JM, Melendi PG, Lucas MM, Reina M, Pintado A, Demets R (2010) Survival of lichens and bacteria exposed to outer space conditions – results of the Lithopanspermia experiments. Icarus 208:735–748

    Article  Google Scholar 

  • de los Ríos A, Ascaso C, Wierzchos J (1999) Study of lichens with different state of hydration by the combination of low temperature scanning electron and confocal laser scanning microscopies. Internat Microbiol 2:251–257

    Google Scholar 

  • del Hoyo A, Álvarez R, Del Campo EM, Gasulla F, Barreno E, Casano LM (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot Lond 107:109–118

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III, Czygan F-C, Schreiber U, Lange OL (1990a) Differences in the capacity for radiationless energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180:582–589

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Máguas C, Adams WW, Meyer A, Kilian E, Lange OL (1990b) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180:400–409

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Pytochem Rev 10:445–456

    Article  CAS  Google Scholar 

  • Freitag S, Feldmann J, Raab A, Crittenden PD, Hogan EJ, Squier HA, Boyd KG, Thain S (2012) Metabolite profile shifts in the heathland lichen Cladonia portentosa in response to N deposition reveal novel biomarkers. Physiol Plant 146:160–172

    Article  CAS  PubMed  Google Scholar 

  • Garty J, Tamir O, Cohen Y, Lehr H, Goren AI (2002) Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. Environ Toxicol Chem 21:848–858

    Article  CAS  PubMed  Google Scholar 

  • Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichen alga Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208

    Article  CAS  PubMed  Google Scholar 

  • Gomez F, Barták M, Bell EM (2012) Extreme environments on earth as analogues for life on other planets: astrobiology. In: Bell EM (ed) Life at extremes. Environments, organisms and strategies for survival. CABI, Walingford, pp 522–536

    Chapter  Google Scholar 

  • Green TGA, Lange OL (1991) Ecophysiological adaptations of the lichen genera Pseudocyphellaria and Sticta to South temperate rainforests. Lichenologist 23:267–282

    Google Scholar 

  • Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1997) Temperate rainforest lichens in New Zealand: light response of photosynthesis. NZ J Bot 35:493–504

    Article  Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Luttge U et al (eds) Plant desiccation tolerance, ecological studies 215, Part 2. Springer, Berlin, pp 89–120

    Chapter  Google Scholar 

  • Hájek J, Barták M, Gloser J (2001) Effects of thallus temperature and hydration on photosynthetic parameters of Cetraria islandica from contrasting habitats. Photosynthetica 39:427–435

    Article  Google Scholar 

  • Hájek J, Barták M, Dubová J (2006) Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biol Plant 50:624–634

    Article  Google Scholar 

  • Hájek J, Vaczi P, Barták M, Smejkal L, Lipavská H (2009) Cryoproective role of ribitol in Xanthoparmelia somloensis. Biol Plant 53:677–684

    Article  Google Scholar 

  • Hájek J, Váczi P, Barták M, Jahnová L (2012) Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology 64:215–222

    Article  PubMed  Google Scholar 

  • Heber U, Bilger W, Shuvalov VA (2006) Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. J Exp Bot 57:2993–3006

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Bilger W, Türk R, Lange OL (2010) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thali of the lichen Lobaria pulmonaria. New Phytol 185:459–470

    Article  CAS  PubMed  Google Scholar 

  • Ilík P, Schansker B, Kotabová E, Váczi P, Strasser RJ, Barták M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20

    Article  PubMed  Google Scholar 

  • Jensen M, Siebke K (1997) Fluorescence imaging of lichens in the macro scale. Symbiosis 23:183–195

    Google Scholar 

  • Jupa R, Hájek J, Hazdrová J, Barták M (2012) Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Rep 2:31–41

    Article  Google Scholar 

  • Kappen L (1993) Plant activity under snow and ice, with particular reference to lichens. Arctic 46:297–302

    Article  Google Scholar 

  • Kappen L, Schroeter B, Scheidegger C, Sommerkorn M, Hestmark G (1996) Cold resistance and metabolic activity of lichens bellow 0° C. Adv Space Res 18:119–128

    Article  Google Scholar 

  • Kong FX, Hu W, Chao SY, Sang WL, Wang LS (1999) Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ Exper Bot 42:201–209

    Article  CAS  Google Scholar 

  • Kosugi M, Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50:879–888

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Birtić S (2005) A modulating role for antioxidants in desiccation tolerance. Integrat Comparat Biol 45:734–740

    Article  CAS  Google Scholar 

  • Kranner I, Grill D (1996) Significance of thiol-disulphide exchange in resting stages of plant development. Bot Acta 109:8–14

    Article  CAS  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133

    Article  Google Scholar 

  • Lange OL (1980) Moisture content and CO2 exchange of lichens. Oecologia 45:82–87

    Article  Google Scholar 

  • Lange OL (2002) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation - I. Dependence of photosynthesis on water content, light, temperature and CO2 concentration from laboratory measurements. Flora 197:233–249

    Article  Google Scholar 

  • Lange OL, Green TGA (1996) High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural condition. Oecologia 19:111–118

    Google Scholar 

  • Lange OL, Green TGA (2008) Diel and seasonal courses of ambient carbon dioxide concentration and their effect on productivity of the epilithic lichen Lecanora muralis in a temperate, suburban habitat. Lichenologist 40:449–462

    Article  Google Scholar 

  • Lange OL, Schulze ED, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste.II.CO2-Gaswechsel und Wasserhaushalt von Krusten- und Blattflechten am natürlichen Standort während der sommerlichen Trocken-periode. Flora 159:525–538

    Google Scholar 

  • Lange OL, Geiger IL, Schulze E-D (1977) Ecophysiological investigations on lichens of the Negev desert. Oecologia 28:247–259

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in Southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Budel B, Meyer A, Zellner H, Zotz G (2004) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist 36:329–342

    Article  Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280

    Article  Google Scholar 

  • Lange OL, Reichenberger H, Walz H (2007) Continuous monitoring of CO2 exchange of lichens in the field: short-term enclosure with an automatically operating cuvette. Lichenologist 29:259–274

    Google Scholar 

  • Larsson P, Večeřová K, Cempírková H, Solhaug KA, Gauslaa Y (2009) Does UV-B influence biomass growth in lichens deficient in sun-screening pigments? Environ Exp Bot 67:215–221

    Article  CAS  Google Scholar 

  • Lud C, Huiskes A, Ott S (2001) Morphological evidence for the symbiotic character of Turgidosculum complicatulum Kohlm. & Kohlm. (= Mastodia tesselata Hook.f. & Harvey). Symbiosis 31:141–151

    Google Scholar 

  • Máguas C, Griffiths H, Ehleringer J, Serôdio J (1993) Characterization of photobiont associations in lichens using carbon isotope discrimination techniques. In: Ehleringer J, Hall T, Farquhar G (eds) Physiological ecology series: perspectives on carbon and water relations from stable isotopes, vol 11. Academic, London, pp 201–212

    Chapter  Google Scholar 

  • Mayaba N, Beckett RP (2001) The effect of desiccation on the activities of antioxidant enzymes in lichens from habitats of contrasting water status. Symbiosis 31:113–121

    CAS  Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary compound usnic acid. Mycol Prog 5:221–229

    Article  Google Scholar 

  • Moudrá A (2009) Activation of non-photochemical quenching mechanisms of absorbed light energy in lichen thalli exposed to desiccation stress. Master thesis, Masaryk University

    Google Scholar 

  • Mrak T, Jeran Z, Batič F et al (2010) Arsenic accumulation and thiol status in lichens exposed to As(V) in controlled conditions. Biometals 23:207–219

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Strasser RJ, Schansker G (2012) Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynth Res 111:303–314

    Article  CAS  PubMed  Google Scholar 

  • Palmer RJ, Friedmann EI (1990) Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb Ecol 19:111–118

    Article  Google Scholar 

  • Palmqvist K (2000) Carbon economy of lichens. New Phytol 148:11–36

    Article  CAS  Google Scholar 

  • Palmqvist K, Badger MR (1996) Carbonic anhydrase(s) associated with lichens: in vivo activities, possible locations and putative roles. New Phytol 132:627–639

    Article  CAS  Google Scholar 

  • Palmqvist K, Sundberg B (2000) Light use efficiency of dry matter gain in five macro-lichens: relative impact of microclimate conditions and species-specific traits. Plant Cell Environ 23:1–14

    Article  Google Scholar 

  • Palmqvist K, de los Rios A, Ascaso C, Samuelsson G (1997) Photosynthetic carbon acquisition in the lichen photobionts Coccomyxa and Trebouxia (Chlorophyta). Oecologia 101:67–76

    CAS  Google Scholar 

  • Palmqvist K, Campbell D, Ekblad A, Johansson H (1998) Photosynthetic capacity in relation to nitrogen content and its partitioning in lichens with different photobionts. Plant Cell Environ 21:361–372

    Article  CAS  Google Scholar 

  • Palmqvist K, Dahlman L, Valladares F, Tehler A, Sancho LG, Mattsson J-E (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133:295–306

    Article  Google Scholar 

  • Pannewitz S, Green TGA, Schlensog M, Seppelt R, Sancho LG, Schroeter B (2006) Photosynthetic performance of Xanthoria mawsonii C. W. Dodge in coastal habitats, Ross Sea region, continental Antarctica. Lichenologist 38:67–81

    Article  Google Scholar 

  • Peksa O, Škaloud M (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phyl Evol 54:36–46

    Article  Google Scholar 

  • Peksa O, Škaloud M (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948

    Article  PubMed  Google Scholar 

  • Piccotto M, Tretiach M (2010) Photosynthesis in chlorolichens: the influence of the habitat light regime. Ital J Plant Res 123:763–775

    Article  CAS  Google Scholar 

  • Reiter R, Türk R (2000) Investigations on the CO2 exchange of lichens in the alpine belt. II. Comparative patterns of net the CO2 exchange in Cetraria islandica and Flavocetraria nivalis. Phyton Ann Rei Botanicae 40:161–177

    Google Scholar 

  • Reiter R, Höftberger M, Green TGA, Türk R (2008) Photosynthesis of lichens from lichen-dominated communities in the alpine/ nival belt of the Alps – II: laboratory and field measurements of CO2 exchange and water relations. Flora 203:34–46

    Article  Google Scholar 

  • Rubio C, Fernández E, Hidalgo ME, Quilhot W (2002) Effects of solar UV-B radiation in the accumulation of rhizocarpic acid in a lichen species from alpine zones of Chile. Bol de la Soc Chil de Quím 47:1–10

    Article  Google Scholar 

  • Sancho LG, Kappen L (1989) Photosynthesis and water relations and the role of anatomy in Umbilicariaceae (lichenes) from Central Spain. Oecologia 81:473–480

    Article  Google Scholar 

  • Scheidegger C, Schroeter B, Frey B (1995) Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197:399–409

    Article  CAS  Google Scholar 

  • Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2011) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biol 34:13–22

    Article  Google Scholar 

  • Smith EC, Griffiths H (1998) Intraspecific variation in photosynthetic responses of trebouxioid lichens with reference to the activity of a carbon-concentrating mechanism. Oecologia 113:360–369

    Article  Google Scholar 

  • Solhaug K-A, Gauslaa Y (2004) Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ 27:167–176

    Article  CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sunscreening pigments in lichens. New Phytol 158:91–100

    Article  CAS  Google Scholar 

  • Štěpigová J, Vráblíková H, Lang J, Večeřová K, Barták M (2007) Glutathione and zeaxanthin formation during high light stress in foliose lichens. Plant Soil Environ 53:340–344

    Google Scholar 

  • Sundberg B, Campbell D, Palmqvist K (1997) Predicting CO2 gain and photosynthetic light acclimation from fluorescence yield and quenching in cyano-lichens. Planta 201:138–145

    Article  CAS  Google Scholar 

  • Sundberg B, Ekblad A, Näsholm T, Palmqvist K (1999) Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations. Funct Ecol 13:119–125

    Article  Google Scholar 

  • Tretiach M, Pavanetto S, Pittao E, Sanità di Toppi L, Piccotto M (2012) Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia 168:589–599

    Article  PubMed  Google Scholar 

  • Uchida M, Nakatsubo T, Kanda H, Koizumi H (2006) Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland in the high arctic, Ny-Ålesund, Svalbard. Polar Res 25:39–49

    Article  Google Scholar 

  • Unal D, Uyanikgil (2011) UV-B induces cell death in the lichen Physcia semipinnata (J.F.Gmel). Turk J Biol 35:137–145

    CAS  Google Scholar 

  • Veerman J, Vasil’ev S, Paton GD, Ramanauskas J, Bruce D (2007) Photoprotection in the Lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching. Plant Physiol 145:997–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vráblíková H, Barták M, Wonisch A (2005) Changes in glutathione and xanthophyll cycle pigments in high light-stressed lichens Umbilicaria antarctica and Lasallia pustulata. J Photochem Photobiol B 79:35–41

    Article  PubMed  Google Scholar 

  • Weissman L, Fraiberg M, Shine L, Garty J, Hochman A (2006) Responses of antioxidants in the lichen Ramalina lacera may serve as an early-warning bioindicator system for the detection of air pollution stress. FEMS Microbiol Ecol 58:41–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am very thankful to my colleagues from the Laboratory of Photosynthetic Processes (Masaryk University, Brno) who have collaborated with me in many field- and laboratory-based studies focussed on ecophysiology of lichen photosynthesis within last decade. Their particular help during the preparation of manuscript of this chapter is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Barták .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barták, M. (2014). Lichen Photosynthesis. Scaling from the Cellular to the Organism Level. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_20

Download citation

Publish with us

Policies and ethics