Skip to main content
Log in

Molecular analysis of two mutants from Lotus japonicus deficient in plastidic glutamine synthetase: functional properties of purified GLN2 enzymes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two photorespiratory mutants from Lotus japonicus, namely Ljgln2-1 and Ljgln2-2, deficient in plastidic glutamine synthetase (GLN2), were analysed at the molecular level. Both mutants showed normal levels of Gln2 mRNA, indicating that they were affected post-transcriptionally. Complete sequencing of full-length Gln2 cDNAs revealed the presence of a single point mutation on each mutant, leading to G85R and L278H amino acid replacements, respectively. Different types of experimental approaches, including heterologous expression and complementation tests in Escherichia coli, showed that both GLN2 mutant proteins completely lacked of biosynthetic and transferase enzyme activities. Moreover, it was also shown that while GLN2-1 mutant protein was assembled into a less stable inactive octamer, GLN2-2 mutant protein was unable to acquire a proper quaternary structure and was rapidly degraded. Therefore, the mutations analysed are the first of their type affecting the stability and/or the quaternary structure of the GLN2 enzyme. The kinetic parameters of purified recombinant GLN2 were determined. The enzyme showed positive cooperativity towards ammonium and Mg2+. Thiol compounds stimulated by twofold the biosynthetic activity but not the transferase activity of recombinant GLN2 and were able to alter the kinetics towards glutamate of the enzyme. Moreover, the biosynthetic activity of recombinant GLN2 was stimulated by more than tenfold by the presence of free Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GS:

Glutamine synthetase

GOGAT:

Glutamate synthase

GLN1:

Cytosolic glutamine synthetase (also called GS1)

GLN2:

Plastidic glutamine synthetase (also called GS2)

CTAB:

Hexadecyltrimethylammonium bromide

DTE:

Dithioerythritol

DTT:

Dithiothreitol

EMS:

Ethyl methanesulphonate

EST:

Expressed sequenced tag

γ-GHA:

γ-Glutamylhydroxamate

GSH:

Reduced glutathione

h:

Hill number

IPTG:

Isopropyl-beta-d-thiogalactopyranoside

References

  • Bennett MJ, Cullimore JV (1990) Expression of three plant glutamine synthetase cDNAs in E. coli. Formation of catalytically active isoenzymes, and complementation of a glnA mutant. Eur J Biochem 193:319–324

    Article  PubMed  CAS  Google Scholar 

  • Betti M, Márquez AJ, Yanes C, Maestre A (2002) ATP binding to purified homopolymeric plant glutamine synthetase studied by isothermal titration calorimetry. Thermochim Acta 394:63–71

    Article  CAS  Google Scholar 

  • Choi YA, Kim SG, Kwon YM (1999) The plastidic glutamine synthetase activity is directly modulated by means of redox change at two unique cysteine residues. Plant Sci 149:175–182

    Article  CAS  Google Scholar 

  • Clemente MT, Márquez AJ (1999a) Functional importance of Asp56 from the α-polypeptide of Phaseolus vulgaris glutamine synthetase. An essential residue for transferase but not for biosynthetic enzyme activity. Eur J Biochem 264:453–460

    Article  CAS  Google Scholar 

  • Clemente MT, Márquez AJ (1999b) Site-directed mutagenesis of Glu-297 from the α-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to l-methionine sulfoximine. Plant Mol Biol 40:835–845

    Article  CAS  Google Scholar 

  • Clemente MT, Márquez AJ (2000) Site-directed mutagenesis of Cys-92 from the α-polypeptide of Phaseolus vulgaris glutamine synthetase reveals that this highly conserved residue is not essential for enzyme activity but it is involved in thermal stability. Plant Sci 154:189–197

    Article  PubMed  CAS  Google Scholar 

  • De la Torre F, García-Gutierrez A, Crespillo R, Canton FR, Avila C, Cánovas FM (2002) Functional expression of two pine glutamine synthetase genes in bacteria reveals that they encode cytosolic holoenzymes with different molecular and catalytic properties. Plant Cell Physiol 43:802–809

    Article  Google Scholar 

  • Denton MD, Ginsburg A (1969) Conformational changes in glutamine synthetase from Escherichia coli. I. The binding of Mn2+ in relation to some aspects of the enzyme structure and activity. Biochemistry 8:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Denton MD, Ginsburg A (1970) Some characteristics of the binding of substrates to glutamine synthetase from Escherichia coli. Biochemistry 9:617–632

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Gill HS, Pfluegl GMU, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122–145

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  CAS  Google Scholar 

  • Florencio FJ, Vega JM (1983) Separation, purification and characterization of two isoforms of glutamine synthetase from Chlamydomonas reinhardtii. Z Naturforsh 38:531–538

    Google Scholar 

  • Forde BG, Cullimore JV (1989) The molecular biology of glutamine synthetase in higher plants. Oxford Surv Plant Mol Cell Biol 6:247–296

    CAS  Google Scholar 

  • Freeman J, Márquez AJ, Wallsgrove RM, Saarelainen R, Forde BG (1990) Molecular analysis of barley mutants deficient in chloroplast glutamine synthetase. Plant Mol Biol 14:297–311

    Article  PubMed  CAS  Google Scholar 

  • Freidfelder D (1987) Chemical mutagens. In: Daven CI (ed) Molecular biology, 2nd edn. Jones and Bartlett Publishers, Boston, pp 300–302

    Google Scholar 

  • Grotjohann N, Kowallik W, Huang Y, Shulte in den Baumen A (2000) Investigation into enzymes of nitrogen metabolism of the ectomycorrhizal basidiomycete, Suillus bovinus. Z Naturforsh 55c:203–212

    Google Scholar 

  • Hirel B, Gadal P (1980) Glutamine synthetase in rice: a comparative study of the enzymes from root and leaves. Plant Physiol 66:619–623

    PubMed  CAS  Google Scholar 

  • Hirel B, Lea PJ (2002) The biochemistry, molecular biology, and genetic manipulation of primary ammonia assimilation. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer, Dordrecht, pp 71–92

    Google Scholar 

  • Höpfner M, Reifferscheid G, Wild A (1988) Molecular composition of glutamine synthetase of Sinapsis alba L. Z Naturforsch 43c:194–198

    Google Scholar 

  • Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ (2001) Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 10: 1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279:16598–16605

    Article  PubMed  CAS  Google Scholar 

  • Kretovich WL, Evstigneeva ZG, Pushkin AV, Dzhokharidze TZ (1981) Two forms of glutamine synthetase in leaves of Cucurbita pepo. Phytochemistry 20:625–629

    Article  CAS  Google Scholar 

  • Kunz BA, Henson ES, Karthikeyan R, Kuschak T, McQueen SA, Scott CA, Xiao W (1998) Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethil methanesulfonate and N-methyl-N′-nitro-N-nitrosoguanidine. Environ Mol Mutat 32:173–178

    Article  CAS  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ (1991) The inhibition of ammonia assimilation: a mechanism of herbicide action. In: Baker NR, Percival MP (eds) Herbicides. Elsevier, Amsterdam, pp 267–298

    Google Scholar 

  • Listrom CD, Morizono H, Rajagopal BS, McCann M, Tuchman M, Allewell N (1997) Expression, purification, and characterization of recombinant human glutamine synthetase. Biochem J 328:159–163

    PubMed  CAS  Google Scholar 

  • Mäck G (1998) Glutamine synthetase isoenzymes, oligomers and subunits from hairy roots of Beta vulgaris L. var. lutea. Planta 205:113–120

    Article  PubMed  Google Scholar 

  • Mäck G, Tischner R (1994) Activity of the tetramer and octamer of glutamine synthetase isoforms during primary leaf ontogeny of sugar beet (Beta vulgaris L.). Planta 194:353–359

    Article  Google Scholar 

  • Mann AF, Fentem PA, Stewart GR (1979) Identification of two forms of glutamine synthetase in barley (Hordeum vulgare). FEBS Lett 110:265–267

    Article  Google Scholar 

  • Mandersheid R, Wild A (1986) Characterization of glutamine synthetase of roots, etiolated cotyledons and green leaves from Sinapsis alba (L.). Z Naturforsh 41c:712–716

    Google Scholar 

  • Márquez AJ, Betti M, García-Calderón M, Pal’ove-Balang P, Diaz P, Monza J (2005) Nitrate assimilation in Lotus japonicus. J Exp Bot 56:1729–1739

    Article  CAS  Google Scholar 

  • Melo PM, Lima LM, Santos IM, Carvalho HG, Cullimore JV (2003) Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol 132:390–399

    Article  PubMed  CAS  Google Scholar 

  • Montanini B, Betti M, Márquez AJ, Balestrini R, Bonfante P, Ottonello S (2003) Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus. Biochem J 373:357–368

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229

    Article  PubMed  CAS  Google Scholar 

  • Muhitch MJ (1989) Purification and characterization of two forms of glutamine synthetase from the pedicel region of maize (Zea mays L.) kernels. Plant Physiol 91:868–875

    PubMed  CAS  Google Scholar 

  • O’Neal D, Joy KW (1974) Glutamine synthetase of pea leaves. Divalent cation effects, substrate specificity, and other properties. Plant Physiol 54:773–779

    PubMed  CAS  Google Scholar 

  • Orea A, Pajuelo P, Pajuelo E, Quidiello C, Romero JM, Márquez AJ (2002) Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiol Plant 115:352–361

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan WJ, Smithers GW (1979) Stability constants for biologically important metal-ligand complexes. In: Purich DL (ed) Methods in enzymology, vol 63. Academic, New York, pp 294–336

  • Pajuelo E, Borrero JA, Márquez AJ (1993) Immunological approach to subunit composition of ferredoxin-nitrite reductase from Chlamydomonas reinhadtii. Plant Sci 95:9–21

    Article  CAS  Google Scholar 

  • Palatnik JF, Carrillo N, Valle EM (1999) The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol 121:471–478

    Article  PubMed  CAS  Google Scholar 

  • Pastink A, Heemskerk E, Nivard MJ, van Vliet CJ, Vogel EW (1991) Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and—deficient strains of Drosophila melanogaster. Mol Gen Genet 229:213–218

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Shimizu H, Hase T, Yamazaki Y, Takao T, Shimonishi Y, Sugiyama T (1996) Molecular identification and characterization of cytosolic isoforms of glutamine synthetase in maize roots. J Biol Chem 271:29561–29568

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) In: Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarkar PK, Fischman DA, Goldwasser E, Moscona AA (1972) Isolation and characterization of glutamine synthetase from chichen neural retina. J Biol Chem 247:7743–7749

    PubMed  CAS  Google Scholar 

  • Shaham S, Reddien PW, Davies B, Horvitz HR (1999) Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Genetics 153:1655–1671

    PubMed  CAS  Google Scholar 

  • Shankar RA, Anderson PM (1985) Purification and properties of glutamine synthetase from liver of Squalus acanthias. Arch Biochem Biophys 239:248–259

    Article  PubMed  CAS  Google Scholar 

  • Siegel LM, Monty KJ (1966) Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulphite and hydroxylamine reductases. Biochim Biophys Acta 112:346–362

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J, Szczyglowski K, de Bruijn FJ, Parniske M (1999) Genetic nomenclature guidelines for the model legume Lotus japonicus. Trends Plant Sci 8:300–301

    Article  Google Scholar 

  • Temple SJ, Kunjibettu S, Roche D, Sengutpa-Gopalan C (1996) Total glutamine synthetase activity during soybean nodule development is controlled at the level of transcription and holoprotein turnover. Plant Physiol 112:1723–1733

    PubMed  CAS  Google Scholar 

  • Von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Article  Google Scholar 

  • Waegemann K, Soll J (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271:6545–6554

    Article  PubMed  CAS  Google Scholar 

  • Wallsgrove RM, Turner JP, Hall NP, Kendall AC, Bright SWJ (1987) Barley mutants lacking chloroplast glutamine synthetase—biochemical and genetic analysis. Plant Physiol 83:155–158

    Article  PubMed  CAS  Google Scholar 

  • Wedler FC, Denman RB (1984) Glutamine synthetse: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul 24:153–169

    PubMed  CAS  Google Scholar 

  • Woodall J, Boxall JG, Forde BG, Pearson J (1996) Changing perspectives in plant nitrogen metabolism: the central role of glutamine synthetase. Sci Prog 79:1–26

    CAS  Google Scholar 

  • Woodall J, Forde BG (1996) Glutamine synthetase polypeptides in the roots of 55 legume species in relation to their climatic origin and the partitioning of nitrate assimilation. Plant Cell Environ 19:848–858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank funding from research projects BMC2001-3162/BFU2004-02753/BFU2005-03120 from MCYT/MEC-FEDER (Spain), HPRN-CT2000-00086, MRTN-CT-2003-505227 and INCO-Dev 517617 from the European Union, as well as support given by Junta de Andalucía to group CVI-163. The authors also wish to thank Prof. Peter J. Lea (Lancaster University) and Prof. Brian G. Forde (Lancaster University) for a critical reading of this manuscript. Analytical ultracentrifugation facilities were provided by Drs. G. Rivas and C. Alfonso from the service of analytical ultracentrifugation (CIB, Madrid, Spain). Technical assistance of MJ Cubas (Universidad de Sevilla) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Márquez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betti, M., Arcondéguy, T. & Márquez, A.J. Molecular analysis of two mutants from Lotus japonicus deficient in plastidic glutamine synthetase: functional properties of purified GLN2 enzymes. Planta 224, 1068–1079 (2006). https://doi.org/10.1007/s00425-006-0279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0279-z

Keywords

Navigation