Skip to main content

Advertisement

Log in

Electrophysiological characterization of ectopic spontaneous discharge in axotomized and intact fibers upon nerve transection: a role in spontaneous pain?

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Many patients experience positive symptoms after traumatic nerve injury. Despite the increasing number of experimental studies in models of peripheral neuropathy and the knowledge acquired, most of these patients lack an effective treatment for their chronic pain. One possible explanation might be that most of the preclinical studies focused on the development of mechanical or thermal allodynia/hyperalgesia, neglecting that most of the patients with peripheral neuropathies complain mostly about spontaneous forms of pains. Here, we summarize the aberrant electrophysiological behavior of peripheral nerve fibers recorded in experimental models, the underlying pathophysiological mechanisms, and their relationship with the symptoms reported by patients. Upon nerve section, axotomized but also intact fibers develop ectopic spontaneous activity. Most interestingly, a proportion of axotomized fibers might present receptive fields in the skin far beyond the site of damage, indicative of a functional cross talk between neuromatose and intact fibers. All these features can be linked with some of the symptoms that neuropathic patients experience. Furthermore, we spotlight the consequence of primary afferents with different patterns of spontaneous discharge on the neural code and its relationship with chronic pain states. With this article, readers will be able to understand the pathophysiological mechanisms that might underlie some of the symptoms that experience neuropathic patients, with a special focus on spontaneous pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackerley R, Watkins R (2018) Microneurography as a tool to study the function of individual C-fiber afferents in humans: responses from nociceptors, thermoreceptors, and mechanoreceptors. J Neurophysiol 120:2834–2846. https://doi.org/10.1152/jn.00109.2018

    Article  PubMed  Google Scholar 

  2. Adrian E (1926) The impulses produced by sensory nerve-endings. J Physiol 62:33–51. https://doi.org/10.1113/jphysiol.1926.sp002334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ali Z, Ringkamp M, Hartke T, Chien H, Flavahan N, Campbell J, Meyer R (1999) Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 81:455–466. https://doi.org/10.1152/jn.1999.81.2.455

    Article  CAS  PubMed  Google Scholar 

  4. Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: Interactions at the axon level. Prog Neurobiol 98:16–37. https://doi.org/10.1016/j.pneurobio.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  5. Amir R, Devor M (1992) Axonal cross-excitation in nerve-end neuromas: comparison of A- and C-fibers. J Neurophysiol 68:1160–1166. https://doi.org/10.1152/jn.1992.68.4.1160

    Article  CAS  PubMed  Google Scholar 

  6. Amir R, Michaelis M, Devor M (2002) Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. J Neurosci 22:1187–1198. https://doi.org/10.1523/JNEUROSCI.22-03-01187.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atherton D, Taherzadeh O, Facer P, Elliot D, Anand P (2006) The potential role of nerve growth factor (NGF) in painful neuromas and the mechanism of pain relief by their relocation to muscle. J Hand Surg 31:652–656. https://doi.org/10.1016/j.jhsb.2006.06.009

    Article  CAS  Google Scholar 

  8. Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D, Willis DE, Yudin D, Rishal I, Rother F, Bader M, Blesch A, Pilpel Y, Twiss JL, Fainzilber M (2012) Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 31:1350–1363. https://doi.org/10.1038/emboj.2011.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernal L, Cisneros E, García-Magro N, Roza C (2019) Immunostaining in whole-mount lipid-cleared peripheral nerves and dorsal root ganglia after neuropathy in mice. Sci Rep 9:8374. https://doi.org/10.1038/s41598-019-44897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernal L, Cisneros E, Roza C (2021) Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 25:886–901. https://doi.org/10.1002/ejp.1718

    Article  CAS  PubMed  Google Scholar 

  11. Bernal L, Lopez-Garcia JA, Roza C (2016) Spontaneous activity in C-fibres after partial damage to the saphenous nerve in mice: Effects of retigabine. Eur J Pain 20:1335–1345. https://doi.org/10.1002/ejp.858

    Article  CAS  PubMed  Google Scholar 

  12. Bernal L, Roza C (2018) Hyperpolarization-activated channels shape temporal patterns of ectopic spontaneous discharge in C-nociceptors after peripheral nerve injury. Eur J Pain 22:1377–1387. https://doi.org/10.1002/ejp.1226

    Article  CAS  Google Scholar 

  13. Bernal L, Sotelo-Hitschfeld P, König C, Sinica V, Wyatt A, Winter Z, Hein A, Touska F, Reinhardt S, Tragl A, Kusuda R, Wartenberg P, Sclaroff A, Pfeifer JD, Ectors F, Dahl A, Freichel M, Vlachova V, Brauchi S, Roza C, Boehm U, Clapham DE, Lennerz JK, Zimmermann K (2021) Odontoblast TRPC5 channels signal cold pain in teeth. Sci Adv 7:eabf5567. https://doi.org/10.1126/sciadv.abf5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG (2008) Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol 64:644–653. https://doi.org/10.1002/ana.21527

    Article  PubMed  Google Scholar 

  15. Blumberg H, Jänig W (1982) Activation of fibers via experimentally produced stump neuromas of skin nerves: ephaptic transmission or retrograde sprouting? Exp Neurol 76:468–482. https://doi.org/10.1016/0014-4886(82)90117-0

    Article  CAS  PubMed  Google Scholar 

  16. Blumberg H, Jänig W (1984) Discharge pattern of afferent fibers from a neuroma. Pain 20:335–353. https://doi.org/10.1016/0304-3959(84)90111-8

    Article  CAS  PubMed  Google Scholar 

  17. Bostock H, Campero M, Serra J, Ochoa J (2005) Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients. Brain 128:2154–2163. https://doi.org/10.1093/brain/awh552

    Article  CAS  PubMed  Google Scholar 

  18. Campero M, Bostock H, Baumann TK, Ochoa JL (2010) A search for activation of C nociceptors by sympathetic fibers in complex regional pain syndrome. Clin Neurophysiol 121:1072–1079. https://doi.org/10.1016/j.clinph.2009.12.038

    Article  PubMed  PubMed Central  Google Scholar 

  19. Campero M, Serra J, Bostock H, Ochoa J (2001) Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol 535:855–865. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00855.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campero M, Serra J, Marchettini P, Ochoa J (1998) Ectopic impulse generation and autoexcitation in single myelinated afferent fibers in patients with peripheral neuropathy and positive sensory symptoms. 21:1661–1667https://doi.org/10.1002/(SICI)1097-4598(199812)21

  21. Caporale N (2008) Dan Y Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46. https://doi.org/10.1146/annurev.neuro.31.060407.125639

    Article  CAS  PubMed  Google Scholar 

  22. Chabal C, Russell LC, Burchiel KJ (1989) The effect of intravenous lidocaine, tocainide, and mexiletine on spontaneously active fibers originating in rat sciatic neuromas. Pain 38:333–338. https://doi.org/10.1016/0304-3959(89)90220-0

    Article  CAS  PubMed  Google Scholar 

  23. Chaplan SR, Guo H-Q, Lee D, Luo L, Liu C, Kuei C, Velumian AA, Butler MP, Brown SM, Dubin AE (2003) Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 23:1169–1178

    Article  CAS  Google Scholar 

  24. Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of Hcn1 and Hcn2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117:491–504. https://doi.org/10.1085/jgp.117.5.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cisneros E, Roza C, Jackson N, López-García JA (2015) A new regulatory mechanism for Kv7.2 protein during neuropathy: enhanced transport from the soma to axonal terminals of injured sensory neurons. Front Cell Neurosci 9:470. https://doi.org/10.3389/fncel.2015.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85:41–50. https://doi.org/10.1016/s0304-3959(99)00251-1

    Article  CAS  PubMed  Google Scholar 

  27. DeFelipe J (1991) Cajal’s degeneration and regeneration of the nervous system. Oxford University Press, New York

    Google Scholar 

  28. Devor M, Govrin-Lippmann R, Angelides K (1993) Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J Neurosci 13:1976–1992. https://doi.org/10.1523/jneurosci.13-05-01976.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Devor M, Wall PD, Catalan N (1992) Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48:261–268. https://doi.org/10.1016/0304-3959(92)90067-l

    Article  PubMed  Google Scholar 

  30. Djouhri L, Fang X, Koutsikou S, Lawson SN (2012) Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 153:1824–1836. https://doi.org/10.1016/j.pain.2012.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  31. Du X, Gao H, Jaffe D, Zhang H, Gamper N (2018) M-type K+ channels in peripheral nociceptive pathways. B J Pharmacol 175:2158–2172. https://doi.org/10.1111/bph.13978

    Article  CAS  Google Scholar 

  32. Dugandzija-Novakovic S, Koszowski A, Levinson S, Shrager P (1995) Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J Neurosci 15:492–503. https://doi.org/10.1523/jneurosci.15-01-00492.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emery EC, Young GT, McNaughton PA (2012) HCN2 ion channels: an emerging role as the pacemakers of pain. Trends Pharmacol Sci 33:456–463. https://doi.org/10.1016/j.tips.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  34. Fellous J-M, Tiesinga PH, Thomas PJ, Sejnowski TJ (2004) Discovering spike patterns in neuronal responses. J Neurosci 24:2989–3001. https://doi.org/10.1523/jneurosci.4649-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. Physiol Rev 101:259–301. https://doi.org/10.1152/physrev.00045.2019

    Article  PubMed  Google Scholar 

  36. Galosi E, Cesa SL, Stefano GD, Karlsson P, Fasolino A, Leone C, Biasiotta A, Cruccu G, Truini A (2018) A pain in the skin. Regenerating nerve sprouts are distinctly associated with ongoing burning pain in patients with diabetes. Eur J Pain 22:1727–1734. https://doi.org/10.1002/ejp.1259

    Article  CAS  PubMed  Google Scholar 

  37. Gold MS, Weinreich D, Kim C-S, Wang R, Treanor J, Porreca F, Lai J (2003) Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 23:158–166. https://doi.org/10.1523/JNEUROSCI.23-01-00158.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gorodetskaya N, Constantin C, Jänig W (2003) Ectopic activity in cutaneous regenerating afferent nerve fibers following nerve lesion in the rat. Eur J Neurosci 18:2487–2497. https://doi.org/10.1046/j.1460-9568.2003.02974.x

    Article  PubMed  Google Scholar 

  39. Gorodetskaya N, Grossmann L, Constantin C, Jänig W (2009) Functional Properties of Cutaneous A- and C-Fibers 1–15 Months After a Nerve Lesion. J Neurophysiol 102:3129–3141. https://doi.org/10.1152/jn.00203.2009

    Article  PubMed  Google Scholar 

  40. Gottrup H, Kristensen A, Bach F, Jensen T (2003) Aftersensations in experimental and clinical hypersensitivity. Pain 103:57–64. https://doi.org/10.1016/s0304-3959(02)00415-3

    Article  PubMed  Google Scholar 

  41. Grossmann L, Gorodetskaya N, Teliban A, Baron R, Jänig W (2009) Cutaneous afferent C-fibers regenerating along the distal nerve stump after crush lesion show two types of cold sensitivity. Eur J Pain 13:682–690. https://doi.org/10.1016/j.ejpain.2008.09.004

    Article  PubMed  Google Scholar 

  42. Hallin R, Torebjörk H, Wiesenfeld Z (1982) Nociceptors and warm receptors innervated by C fibres in human skin. J Neurol Neurosurg Psychiatry 45:313. https://doi.org/10.1136/jnnp.45.4.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haroutounian S, Nikolajsen L, Bendtsen TF, Finnerup NB, Kristensen AD, Hasselstrøm JB, Jensen TS (2014) Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain 155:1272–1279. https://doi.org/10.1016/j.pain.2014.03.022

    Article  PubMed  Google Scholar 

  44. Hebb DO (1949) The organization of behaviour: a neuropsychological theory. New York: Wiley. xix. 335 pp

  45. von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652. https://doi.org/10.1016/j.neuron.2012.02.008

    Article  CAS  Google Scholar 

  46. Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R (2019) Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 123:335–349. https://doi.org/10.1016/j.bja.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  47. Heumann R, Korsching S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104:1623–1631. https://doi.org/10.1083/jcb.104.6.1623

    Article  CAS  PubMed  Google Scholar 

  48. Hulse R, Wynick D, Donaldson LF (2010) Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia. Eur J Pain Lond Engl 14:565.e1-565.e10. https://doi.org/10.1016/j.ejpain.2009.10.001

    Article  Google Scholar 

  49. Jiang Y-Q, Sun Q, Tu H-Y, Wan Y (2008) Characteristics of HCN channels and their participation in neuropathic pain. Neurochem Res 33:1979–1989. https://doi.org/10.1007/s11064-008-9717-6

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Y-Q, Xing G-G, Wang S-L, Tu H-Y, Chi Y-N, Li J, Liu F-Y, Han J-S, Wan Y (2008) Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat. Pain 137:495–506. https://doi.org/10.1016/j.pain.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  51. Kirillova I, Teliban A, Gorodetskaya N, Grossmann L, Bartsch F, Rausch VH, Struck M, Tode J, Baron R, Jänig W (2011) Effect of local and intravenous lidocaine on ongoing activity in injured afferent nerve fibers. Pain 152:1562–1571. https://doi.org/10.1016/j.pain.2011.02.046

    Article  CAS  PubMed  Google Scholar 

  52. Kleggetveit I, Namer B, Schmidt R, As T, Rückel M, Ørstavik K, Schmelz M, Jørum E (2012) High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153:2040–2047. https://doi.org/10.1016/j.pain.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  53. Koltzenburg M, Handwerker H (1994) Differential ability of human cutaneous nociceptors to signal mechanical pain and to produce vasodilatation. J Neurosci 14(3 Pt 2):1756–1765. https://doi.org/10.1523/JNEUROSCI.14-03-01756.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kress M, Koltzenburg M, Reeh P, Handwerker H (1992) Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. J Neurophysiol 68:581–595. https://doi.org/10.1152/jn.1992.68.2.581

    Article  CAS  PubMed  Google Scholar 

  55. Kretschmer T, Happel L, England J, Nguyen D, Tiel R, Beuerman R, Kline D (2002) Accumulation of PN1 and PN3 sodium channels in painful human neuroma-evidence from immunocytochemistry. Acta Neurochir 144:803–10. https://doi.org/10.1007/s00701-002-0970-1 (discussion 810)

    Article  CAS  PubMed  Google Scholar 

  56. Lang P, Fleckenstein J, Passmore G, Brown D, Grafe P (2008) Retigabine reduces the excitability of unmyelinated peripheral human axons. Neuropharmacology 54:1271–1278. https://doi.org/10.1016/j.neuropharm.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, North RY, Rhines LD, Tatsui CE, Rao G, Edwards DD, Cassidy RM, Harrison DS, Johansson CA, Zhang H, Dougherty PM (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38:1124–1136. https://doi.org/10.1523/jneurosci.0899-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43. https://doi.org/10.1016/S0166-2236(96)10070-9

    Article  CAS  PubMed  Google Scholar 

  59. Lisney S, Devor M (1987) Afterdischarge and interactions among fibers in damaged peripheral nerve in the rat. Brain Res 415:122–136. https://doi.org/10.1016/0006-8993(87)90275-7

    Article  CAS  PubMed  Google Scholar 

  60. Lisney SJW, Pover CM (1983) Coupling between fibres involved in sensory nerve neuromata in cats. J Neurol Sci 59:255–264. https://doi.org/10.1016/0022-510x(83)90043-6

    Article  CAS  PubMed  Google Scholar 

  61. Ma C, LaMotte RH (2007) Multiple sites for generation of ectopic spontaneous activity in neurons of the chronically compressed dorsal root ganglion. J Neurosci 27:14059–14068. https://doi.org/10.1523/jneurosci.3699-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mazo I, Rivera-Arconada I, Roza C (2013) Axotomy-induced changes in activity-dependent slowing in peripheral nerve fibres: role of hyperpolarization-activated/HCN channel current. Eur J Pain 17:1281–1290. https://doi.org/10.1002/j.1532-2149.2013.00302.x

    Article  CAS  PubMed  Google Scholar 

  63. Meyer RA, Raja SN, Campbell JN, Mackinnon SE, Dellon AL (1985) Neural activity originating from a neuroma in the baboon. Brain Res 325:255–260. https://doi.org/10.1016/0006-8993(85)90321-x

    Article  CAS  PubMed  Google Scholar 

  64. Michaelevski I, Medzihradszky KF, Lynn A, Burlingame AL, Fainzilber M (2010) Axonal transport proteomics reveals mobilization of translation machinery to the lesion site in injured sciatic nerve*. Mol Cell Proteomics 9:976–987. https://doi.org/10.1074/mcp.m900369-mcp200

    Article  CAS  PubMed  Google Scholar 

  65. Mochizuki Y, Onaga T, Shimazaki H, Shimokawa T, Tsubo Y, Kimura R, Saiki A, Sakai Y, Isomura Y, Fujisawa S, Shibata K-I, Hirai D, Furuta T, Kaneko T, Takahashi S, Nakazono T, Ishino S, Sakurai Y, Kitsukawa T, Lee J, Lee H, Jung M, Babul C, Maldonado PE, Takahashi K, Arce-McShane FI, Ross CF, Sessle BJ, Hatsopoulos NG, Brochier T, Riehle A, Chorley P, Grün S, Nishijo H, Ichihara-Takeda S, Funahashi S, Shima K, Mushiake H, Yamane Y, Tamura H, Fujita I, Inaba N, Kawano K, Kurkin S, Fukushima K, Kurata K, Taira M, Tsutsui K-I, Ogawa T, Komatsu H, Koida K, Toyama K, Richmond BJ, Shinomoto S (2016) Similarity in neuronal firing regimes across mammalian species. J Neurosci 36:5736–5747. https://doi.org/10.1523/JNEUROSCI.0230-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Namer B, Handwerker H (2009) Translational nociceptor research as guide to human pain perceptions and pathophysiology. Exp Brain Res 196:163–172. https://doi.org/10.1007/s00221-009-1777-6

    Article  CAS  PubMed  Google Scholar 

  67. Navarro X, Vivó M, Valero-Cabré A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163–201. https://doi.org/10.1016/j.pneurobio.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  68. Ng Y, Cheung ZH, Ip NY (2006) STAT3 as a downstream mediator of Trk signaling and functions*. J Biol Chem 281:15636–15644. https://doi.org/10.1074/jbc.m601863200

    Article  CAS  PubMed  Google Scholar 

  69. Nora DB, Becker J, Ehlers JA, Gomes I (2005) What symptoms are truly caused by median nerve compression in carpal tunnel syndrome? Clin Neurophysiol 116:275–283. https://doi.org/10.1016/j.clinph.2004.08.013

    Article  PubMed  Google Scholar 

  70. North RY, Lazaro TT, Dougherty PM (2018) Ectopic spontaneous afferent activity and neuropathic pain. Neurosurgery 65:49–54. https://doi.org/10.1093/neuros/nyy119

    Article  PubMed  Google Scholar 

  71. Obreja O, Rukwied R, Nagler L, Schmidt M, Schmelz M, Namer B (2018) Nerve growth factor locally sensitizes nociceptors in human skin. Pain 159:416–426. https://doi.org/10.1097/j.pain.0000000000001108

    Article  CAS  PubMed  Google Scholar 

  72. Ochoa JL, Torebjörk HE (1980) Paraesthesiae from ectopic impulse generation in human sensory nerves. Brain 103:835–853. https://doi.org/10.1093/brain/103.4.835

    Article  CAS  PubMed  Google Scholar 

  73. Ørstavik K, Weidner C, Schmidt R, Schmelz M, Hilliges M, Jørum E, Handwerker H, Torebjörk E (2003) Pathological C-fibres in patients with a chronic painful condition. Brain 126:567–578. https://doi.org/10.1093/brain/awg060

    Article  PubMed  Google Scholar 

  74. Pape H-C (1996) Queer Current and Pacemaker: The hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327. https://doi.org/10.1146/annurev.ph.58.030196.001503

    Article  CAS  PubMed  Google Scholar 

  75. Passmore GM (2012) Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings. Front Mol Neurosci 1–12.https://doi.org/10.3389/fnmol.2012.00063/abstract

  76. Raja SN, Ringkamp M, Guan Y, Campbell JN (2020) John J. Bonica Award Lecture: Peripheral neuronal hyperexcitability: the “low-hanging” target for safe therapeutic strategies in neuropathic pain. Pain 161:S14–S26. https://doi.org/10.1097/j.pain.0000000000001838

    Article  PubMed  PubMed Central  Google Scholar 

  77. Reeh PW (1986) Sensory receptors in mammalian skin in an in vitro preparation. Neurosci Lett 66:141–146. https://doi.org/10.1016/0304-3940(86)90180-1

    Article  CAS  PubMed  Google Scholar 

  78. Rivera L, Gallar J, Pozo M, Belmonte C (2000) Responses of nerve fibres of the rat saphenous nerve neuroma to mechanical and chemical stimulation: an in vitro study. J Physiol 527:305–313. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00305.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N (2011) Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain 152:742–754. https://doi.org/10.1016/j.pain.2010.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roza C, Belmonte C, Viana F (2006) Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain 120:24–35. https://doi.org/10.1016/j.pain.2005.10.006

    Article  PubMed  Google Scholar 

  81. Roza C, Castillejo S, Lopez-García JA (2011) Accumulation of Kv7.2 channels in putative ectopic transduction zones of mice nerve-end neuromas. Mol Pain 7:58–58. https://doi.org/10.1186/1744-8069-7-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roza C, Laird JMA, Souslova V, Wood JN, Cervero F (2003) The tetrodotoxin-resistant Na+ Channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol 550:921–926. https://doi.org/10.1113/jphysiol.2003.046110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roza C, LopezGarcia JA (2008) Retigabine, the specific KCNQ channel opener, blocks ectopic discharges in axotomized sensory fibres. Pain 138:537–545. https://doi.org/10.1016/j.pain.2008.01.031

    Article  CAS  PubMed  Google Scholar 

  84. Rukwied R, Weinkauf B, Main M, Obreja O, Schmelz M (2014) Axonal hyperexcitability after combined NGF sensitization and UV-B inflammation in humans. Eur J Pain 18:785–793. https://doi.org/10.1002/j.1532-2149.2013.00423.x

    Article  CAS  PubMed  Google Scholar 

  85. Sandkühler J, Gruber-Schoffnegger D (2011) Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol 12:18–27. https://doi.org/10.1016/j.coph.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt R, Kleggetveit IP, Namer B, Helås T, Obreja O, Schmelz M, Jørum E (2012) Double spikes to single electrical stimulation correlates to spontaneous activity of nociceptors in painful neuropathy patients. Pain 153:391–398. https://doi.org/10.1016/j.pain.2011.10.041

    Article  PubMed  Google Scholar 

  87. Seltzer Z, Devor M (1979) Ephaptic transmission in chronically damaged peripheral nerves. Neurology 29:1061–1061. https://doi.org/10.1212/wnl.29.7.1061

    Article  CAS  PubMed  Google Scholar 

  88. Tode J, Kirillova-Woytke I, Rausch VH, Baron R, Jänig W (2018) Mechano- and thermosensitivity of injured muscle afferents 20 to 80 days after nerve injury. J Neurophysiol 119:1889–1901. https://doi.org/10.1152/jn.00894.2017

    Article  CAS  PubMed  Google Scholar 

  89. Truini A, Garcia-Larrea L, Cruccu G (2013) Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nat Rev Neurol 9:572–582. https://doi.org/10.1038/nrneurol.2013.180

    Article  CAS  PubMed  Google Scholar 

  90. Tsantoulas C, Laínez S, Wong S, Mehta I, Vilar B, McNaughton PA (2017) Hyperpolarization-activated cyclic nucleotide–gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci Transl Med 9:eaam6072. https://doi.org/10.1126/scitranslmed.aam6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vollert J, Maier C, Attal N, Bennett D, Bouhassira D, Enax-Krumova EK, Finnerup NB, Freynhagen R, Gierthmühlen J, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Magerl W, Ramirez JD, Rice A, Schuh-Hofer S, Segerdahl M, Serra J, Shillo PR, Sindrup S, Tesfaye S, Themistocleous AC, Tölle TR, Treede R-D, Baron R (2017) Stratifying patients with peripheral neuropathic pain based on sensory profiles. Pain 158:1446–1455. https://doi.org/10.1097/j.pain.0000000000000935

    Article  PubMed  PubMed Central  Google Scholar 

  92. Welk E, Leah J, Zimmermann M (1990) Characteristics of A- and C-fibers ending in a sensory nerve neuroma in the rat. J Neurophysiol 63:759–766. https://doi.org/10.1152/jn.1990.63.4.759

    Article  CAS  PubMed  Google Scholar 

  93. Wu G, Ringkamp M, Hartke T, Murinson B, Campbell J, Griffin J, Meyer R (2001) Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 21:RC140. https://doi.org/10.1523/jneurosci.21-08-j0002.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Young GT, Emery EC, Mooney ER, Tsantoulas C, McNaughton PA (2014) Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels. Pain 155:1708–1719. https://doi.org/10.1016/j.pain.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  95. Zimmermann K, Hein A, Hager U, Kaczmarek J, Turnquist BP, Clapham DE, Reeh PW (2009) Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc 4:174–196. https://doi.org/10.1038/nprot.2008.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has been funded by the University of Alcala, Grant/Award Number: CCG19/ CCS-013 and UAH-GP2020-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Roza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Nociception in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roza, C., Bernal, L. Electrophysiological characterization of ectopic spontaneous discharge in axotomized and intact fibers upon nerve transection: a role in spontaneous pain?. Pflugers Arch - Eur J Physiol 474, 387–396 (2022). https://doi.org/10.1007/s00424-021-02655-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02655-7

Keywords

Navigation