Skip to main content

Advertisement

Log in

Role of vitamins in the metabolic syndrome and cardiovascular disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The prevalence of metabolic syndrome and cardiovascular disease has increased and continues to be the leading cause of mortality worldwide. The etiology of these diseases includes a complex phenotype derived from interactions between genetic, environmental, and nutritional factors. In this regard, it is common to observe vitamin deficiencies in the general population and even more in patients with cardiometabolic diseases due to different factors. Vitamins are essential micronutrients for cellular metabolism and their deficiencies result in diseases. In addition to its role in nutritional functions, increasingly, vitamins are being recognized as modulators of genetics expression and signals transduction, when consumed at pharmacological concentrations. Numerous randomized preclinical and clinical trials have evaluated the use of vitamin supplementation in the prevention and treatment of metabolic syndrome and cardiovascular disease. However, it is controversy regarding its efficacy in the treatment and prevention of these diseases. In this review, we investigated chemical basics, physiological effect and recommended daily intake, problems with deficiency and overdose, preclinical and clinical studies, and mechanisms of action of vitamin supplementation in the treatment and prevention of metabolic syndrome and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abd El-Ghffar EA, Barakat A, Shehata SM (2018) Influence of vitamin C or/and L-methionine on hyperglycaemia, hyperlipidaemia and hematological alterations in alloxan-induced diabetes in rats. Prog Nutr 20:270–278. https://doi.org/10.23751/pn.v20i2-S.5418

    Article  Google Scholar 

  2. Adaikalakoteswari A, Vatish M, Alam MT, Ott S, Kumar S, Saravanan P (2017) Low vitamin B12 in pregnancy is associated with adipose-derived circulating miRs targeting PPARγ and insulin resistance. J Clin Endocrinol Metab 102:4200–4209. https://doi.org/10.1210/jc.2017-01155

    Article  Google Scholar 

  3. Aguilera-Méndez A, Espino-García R, Toledo-López ZJ, Hernández-Gallegos Z, Villafaña-Rauda S, Nieto-Aguilar R, Serrato-Ochoa D, Manuel-Jacobo GC (2019) Biotin improves relaxation of rat aortic rings in combination with antihypertensive drugs. PharmaNutrition 8:100147. https://doi.org/10.1016/j.phanu.2019.100147

    Article  Google Scholar 

  4. Aguilera-Méndez A, Fernández-Lainez C, Ibarra-González I, Fernández-Mejía C (2012) The chemistry and biochemistry of niacin (B3). In: Preedy VR (ed) B vitamins and folate: chemistry, analysis, function and effects, 1st edn. Royal Society of Chemistry, Cambridge, pp 108–126

    Chapter  Google Scholar 

  5. Aguilera-Méndez A, Fernández-Mejía C (2012) The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation. BioFactors 38:387–394. https://doi.org/10.1002/biof.1034

    Article  CAS  Google Scholar 

  6. Aguilera-Mendez A, Hernández-Equihua MG, Rueda-Rocha AC, Guajardo-López C, Nieto-Aguilar R, Serrato-Ochoa D, Ruíz Herrera LF, Guzmán-Nateras JA (2018) Protective effect of supplementation with biotin against high-fructose-induced metabolic syndrome in rats. Nutr Res 57:86–96. https://doi.org/10.1016/j.nutres.2018.06.007

    Article  CAS  Google Scholar 

  7. Ahn S, Jun S, Kang M, Shin S, Wie G-A, Baik HW, Joung H (2017) Association between intake of antioxidant vitamins and metabolic syndrome risk among Korean adults. J Nutr Heal 50:313–324. https://doi.org/10.4163/jnh.2017.50.4.313

    Article  CAS  Google Scholar 

  8. Al Mheid I, Quyyumi AA (2017) Vitamin D and cardiovascular disease: controversy unresolved. J Am Coll Cardiol 70:89–100. https://doi.org/10.1016/j.jacc.2017.05.031

    Article  CAS  Google Scholar 

  9. Alberti G, Gana JC, Santos JL (2020) Fructose, omega 3 fatty acids, and vitamin E: involvement in pediatric non-alcoholic fatty liver disease. Nutrients 12.doi: https://doi.org/10.3390/nu12113531

  10. Altschul R, Hoffer A, Stephen JD (1955) Influence of nicotinic acid on serum cholesterol in man. Arch Biochem Biophys 54(2):558–559. https://doi.org/10.1016/0003-9861(55)90070-9

    Article  CAS  Google Scholar 

  11. Andersen FA, Fiume MZ (2001) Final report on the safety assessment of biotin. Int J Toxicol 20(Suppl 4):1–12. https://doi.org/10.1080/10915810701351186

    Article  Google Scholar 

  12. B-Vitamin Treatment Trialists’ Collaboration (2006) Homocysteine-lowering trials for prevention of cardiovascular events: a review of the design and power of the large randomized trials. Am Heart J 151(2):282–287. https://doi.org/10.1016/j.ahj.2005.04.025

    Article  CAS  Google Scholar 

  13. Bendre G, Jaiswal P, Agrawal D (2020) Evaluation of the relationship between obesity and severity of periodontal diseases in rural population: a study protocol. Eur J Mol Clin Med 7:2034–2037

    Google Scholar 

  14. Bento C, Matos AC, Cordeiro A, Ramalho A (2018) Vitamin A deficiency is associated with body mass index and body adiposity in women with recommended intake of vitamin A. Nutr Hosp 35:1072–1078. https://doi.org/10.20960/nh.1630

    Article  CAS  Google Scholar 

  15. Beydoun MA, Chen X, Jha K, Beydoun HA, Zonderman AB, Canas JA (2019) Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr Rev 77(1):32–45. https://doi.org/10.1093/nutrit/nuy044

    Article  Google Scholar 

  16. Bilbis LS, Muhammad SA, Saidu Y, Adamu Y (2012) Effect of vitamins a, C, and e supplementation in the treatment of metabolic syndrome in albino rats. Biochem Res In 2012:678582. https://doi.org/10.1155/2012/678582

    Article  CAS  Google Scholar 

  17. Blaner WS (2019) Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol Ther 197:153–178. https://doi.org/10.1016/j.pharmthera.2019.01.006

    Article  CAS  PubMed Central  Google Scholar 

  18. Boachie J, Adaikalakoteswari A, Samavat J, Saravanan P (2020) Low vitamin B12 and lipid metabolism: evidence from pre-clinical and clinical studies. Nutrients 12:1–20. https://doi.org/10.3390/nu12071925

    Article  CAS  Google Scholar 

  19. Boone-Villa D, Aguilera-Mendez A, Miranda-Cervantes A, Fernandez-Mejia C (2015) Effects of biotin supplementation in the diet on adipose tissue cGMP concentrations, AMPK activation, lipolysis, and serum-free fatty acid levels. J Med Food 18(10):1150–1156

    Article  CAS  Google Scholar 

  20. Booth SL, Al RA (2008) Determinants of vitamin K status in humans. Vitam Horm 78:1–22. https://doi.org/10.1016/S0083-6729(07)00001-5

    Article  CAS  Google Scholar 

  21. Brandenburg VM, Schurgers LJ, Kaesler N, Püsche K, van Gorp RH, Leftheriotis G, Reinartz S, Krüger KR, T, (2015) Prevention of vasculopathy by vitamin K supplementation: can we turn fiction into fact? Atherosclerosis 240(1):10–16. https://doi.org/10.1016/j.atherosclerosis.2015.02.040

    Article  CAS  Google Scholar 

  22. Brion LP, Bell EF, Raghuveer TS (2003) Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 4:CD003665. https://doi.org/10.1002/14651858.cd003665

  23. Bruins MJ, Van Dael P, Eggersdorfer M (2019) The role of nutrients in reducing the risk for noncommunicable diseases during aging. Nutrients 11:85. https://doi.org/10.3390/nu11010085

    Article  CAS  Google Scholar 

  24. Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A (2017) Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord 22:27–41. https://doi.org/10.1007/s40519-016-0312-6

    Article  Google Scholar 

  25. Caprio S, Santoro N, Weiss R (2020) Childhood obesity and the associated rise in cardiometabolic complications. Nat Metab 2(3):223–232. https://doi.org/10.1038/s42255-020-0183-z

    Article  Google Scholar 

  26. Chathurangana PWP, Samaranayake DBDL, Quienters VG, Wickramasinghe VP (2017) Effects of vitamin E supplementation on the clinical outcome of dengue fever and dengue haemorrhagic fever in children. Asian Pacific J Trop Dis 7:645–649. https://doi.org/10.12980/apjtd.7.2017D7-176

    Article  Google Scholar 

  27. Chen F, Du M, Blumberg JB, Ho Chui KK, Ruan M, Rogers G, Shan Z, Zeng L, Zhang FF (2019) Association among dietary supplement use, nutrient intake, and mortality among U.S. adults: a cohort study. Ann Intern Med 170(9):604–613

    Article  CAS  Google Scholar 

  28. Christie-David DJ, Girgis CM, Gunton JE (2015) Effects of vitamins C and D in type 2 diabetes mellitus. Nutr Diet Suppl 7:21–28. https://doi.org/10.2147/NDS.S52022

    Article  Google Scholar 

  29. Combs GF, McClung JP (2017) Chapter 6—vitamin A. In: Elsevier (Ed.), The vitamins: fundamental aspects in nutrition and health. Cornell University, Ithac

  30. Cordero P, Gomez-Uriz AM, Campion J, Milagro FI, Martinez JA (2013) Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 8:105–113. https://doi.org/10.1007/s12263-012-0300-z

    Article  CAS  Google Scholar 

  31. Costa-Silva JH, Simões-Alves AC, Fernandes MP (2016) Developmental origins of cardiometabolic diseases: role of the maternal diet. Front Physiol 7:504. https://doi.org/10.3389/fphys.2016.00504

    Article  PubMed Central  Google Scholar 

  32. Cozzolino M, Mangano M, Galassi A, Ciceri P, Messa P, Nigwekar S (2019) Vitamin K in chronic kidney disease. Nutrients 11:168. https://doi.org/10.3390/nu11010168

    Article  CAS  PubMed Central  Google Scholar 

  33. D’Andrea E, Hey SP, Ramirez CL, Kesselheim AS (2019) Assessment of the role of niacin in managing cardiovascular disease outcomes: a systematic review and meta-analysis. JAMA Netw open 2:e192224. https://doi.org/10.1001/jamanetworkopen.2019.2224

    Article  PubMed Central  Google Scholar 

  34. Da Cunha ATO, Pereira HT, De Aquino SLS, Sales CH, Sena-Evangelista KCM, Lima JG, Lima SCVC, Pedrosa LFC (2016) Inadequacies in the habitual nutrient intakes of patients with metabolic syndrome: a cross-sectional study. Diabetol Metab Syndr 8:1–9. https://doi.org/10.1186/s13098-016-0147-3

    Article  PubMed Central  Google Scholar 

  35. Dakshinamurti K (2015) Vitamins and their derivatives in the prevention and treatment of metabolic syndrome diseases (diabetes). Can J Physiol Pharmacol 93:355–362. https://doi.org/10.1139/cjpp-2014-0479

    Article  CAS  Google Scholar 

  36. Dakshinamurti K, Chauhan J (1989) Biotin. Vitam Horm 45:337–384. https://doi.org/10.1016/s0083-6729(08)60398-2

    Article  CAS  Google Scholar 

  37. Davis RE (1985) Clinical chemistry of vitamin B12. Adv Clin Chem 24:163–216. https://doi.org/10.1016/S0065-2423(08)60273-5

    Article  CAS  Google Scholar 

  38. Deo P, McCullough CL, Almond T, Jaunay EL, Donnellan L, Dhillon VS, Fenech M (2020) Dietary sugars and related endogenous advanced glycation end-products increase chromosomal DNA damage in WIL2-NS cells, measured using cytokinesis-block micronucleus cytome assay. Mutagenesis 35:169–177. https://doi.org/10.1093/mutage/geaa002

    Article  CAS  Google Scholar 

  39. Digby JE, Ruparelia N, Choudhury RP (2012) Niacin in cardiovascular disease: recent preclinical and clinical developments. Arterioscler Thromb Vasc Biol 32:582–588. https://doi.org/10.1161/ATVBAHA.111.236315

    Article  CAS  Google Scholar 

  40. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, Cuneo BF, Huhta JC, Jonas RA, Krishnan A, Lacey S, Lee W, Michelfelder EC, Sr Rempel GR, Silverman NH, Spray TL, Strasburger JF, Tworetzky W, Rychik J, American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129(21):2183–2242. https://doi.org/10.1161/01.cir.0000437597.44550.5d

    Article  Google Scholar 

  41. Dutt T, Toh CH (2008) The Yin-Yang of thrombin and activated protein C. Br J Haematol 140:505–515. https://doi.org/10.1111/j.1365-2141.2007.06977.x

    Article  CAS  Google Scholar 

  42. Eggersdorfer M (2020) What is the optimal intake of vitamin C? Proc Nutr Soc 79:2020. https://doi.org/10.1017/s0029665120005716

    Article  Google Scholar 

  43. El-Fakhri N, McDevitt H, Shaikh MG, Halsey C, Ahmed SF (2014) Vitamin D and its effects on glucose homeostasis, cardiovascular function and immune function. Horm Res Paediatr 81:363–378. https://doi.org/10.1159/000357731

    Article  CAS  Google Scholar 

  44. Fanidi A, Carreras-Torres R, Larose TL, Yuan JM, Stevens VL, Weinstein SJ, Albanes D, Prentice R, Pettinger M, Cai Q, Blot WJ, Arslan AA, Zeleniuch-Jacquotte A, McCullough ML, Le Marchand L, Wilkens LR, Haiman CA, Zhang X, Stampfer MJ, Smith-Warner SA (2019) Is high vitamin B12 status a cause of lung cancer? Int J Cancer 145(6):1499–1503. https://doi.org/10.1002/ijc.32033

    Article  CAS  PubMed Central  Google Scholar 

  45. Farag HAM, Hosseinzadeh-Attar MJ, Muhammad BA, Esmaillzadeh A, El Bilbeisi AH (2019) Effects of vitamin C supplementation with and without endurance physical activity on components of metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr Exp 26:23–33. https://doi.org/10.1016/j.yclnex.2019.05.003

    Article  Google Scholar 

  46. Farajbakhsh A, Mazloomi SM, Mazidi M, Rezaie P, Akbarzadeh M, Ahmad SP, Ferns GA, Ofori-Asenso R, Babajafari S (2019) Sesame oil and vitamin E co-administration may improve cardiometabolic risk factors in patients with metabolic syndrome: a randomized clinical trial. Eur J Clin Nutr 73(10):1403–1411

    Article  CAS  Google Scholar 

  47. Fariña JP, García ME, Alzamendi A, Giovambattista A, Marra CA, Spinedi E, Gagliardino JJ (2013) Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction. Clin Sci 125(2):87–97

    Article  Google Scholar 

  48. Farrokhian A, Raygan F, Bahmani F, Talari HR, Esfandiari R, Esmaillzadeh A, Asemi Z (2017) Long-term vitamin D supplementation affects metabolic status in vitamin D-deficient type 2 diabetic patients with coronary artery disease. J Nutr 147(3):384–389. https://doi.org/10.3945/jn.116.242008

    Article  CAS  Google Scholar 

  49. Faure P, Rossini E, Lafond JL, Richard MJ, Favier A, Halimi S (1997) Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. J Nutr 127(1):103–107. https://doi.org/10.1093/jn/127.1.103

    Article  CAS  Google Scholar 

  50. FDA (2019) Code of Federal Regulations Title 21. Sec. 184.1676 Pyridoxine hydrochloride. In: PART 184 -- DIRECT FOOD Subst. Affirm. AS Gen. RECOGNIZED AS SAFE.https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=184.1676. Accessed 20 Sep 2020

  51. FDA (2019) Code of Federal Regulations Title 21. Sec. 184.1945 Vitamin B[bdi1][bdi2]. In: DIRECT FOOD Subst. Affirm. AS Gen. RECOGNIZED AS SAFE. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=184.1945

  52. Fernandez-Mejia and ML Lazo-de-la-Vega-Monroy (2011) Biological effects of pharmacological concentrations of biotin. J Evid-Based Complement Altern Med 16(1):40–48. https://doi.org/10.1177/1533210110392947

  53. Finlay BB (2020) Are noncommunicable diseases communicable? Science 367:250–251. https://doi.org/10.1126/science.aaz3834

    Article  CAS  Google Scholar 

  54. Flore R, Ponziani FR, Di Rienzo TA, Zocco MA, Flex A, Gerardino L, Lupascu A, Santoro L, Santoliquido A, Di Stasio E, Chierici E, Lanti A, Tondi P, Gasbarrini A (2013) Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci 17:2433–2440

    CAS  Google Scholar 

  55. Foss YJ (2009) Vitamin D deficiency is the cause of common obesity. Med Hypotheses 72(3):314–321. https://doi.org/10.1016/j.mehy.2008.10.005

    Article  CAS  Google Scholar 

  56. Fukuwatari T, Wada H, Shibata K (2008) Age-related alterations of B-group vitamin contents in urine, blood and liver from rats. J Nutr Sci Vitaminol (Tokyo) 54:357–362. https://doi.org/10.3177/jnsv.54.357

    Article  CAS  Google Scholar 

  57. Fulton RL, McMurdo MET, Hill A, Abboud RJ, Arnold GP, Struthers AD, Khan F, Vermeer C, Knapen MHJ, Drummen NEA, Witham MD (2016) Effect of vitamin K on vascular health and physical function in older people with vascular disease—a randomised controlled trial. J Nutr Heal Aging 20:325–333. https://doi.org/10.1007/s12603-015-0619-4

    Article  CAS  Google Scholar 

  58. Galior K, Grebe S, Singh R (2018) Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports. Nutrients 10(8):953. https://doi.org/10.3390/nu10080953

    Article  CAS  PubMed Central  Google Scholar 

  59. Gao M, Zhao Z, Lv P, Li Y, Gao J, Zhang M, Zhao B (2015) Quantitative combination of natural antioxidants prevents metabolic syndrome by reducing oxidative stress. Redox Biol 6:206–217. https://doi.org/10.1016/j.redox.2015.06.013

    Article  CAS  PubMed Central  Google Scholar 

  60. Gasperi V, Sibilano M, Savini I, Catani MV (2019) Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci 20(4):974. https://doi.org/10.3390/ijms20040974

    Article  CAS  PubMed Central  Google Scholar 

  61. Gille A, Bodor ET, Ahmed K, Offermanns S (2008) Nicotinic acid: pharmacological effects and mechanisms of action. Annu Rev Pharmacol Toxicol 48:79–106. https://doi.org/10.1146/annurev.pharmtox.48.113006.09474

    Article  CAS  Google Scholar 

  62. Ginsberg HN, Reyes-Soffer G (2013) Niacin: a long history, but a questionable future. Curr Opin Lipidol 24:475–479. https://doi.org/10.1097/MOL.0000000000000017

    Article  CAS  Google Scholar 

  63. Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G (2020) Roles of vitamins in stem cells. Cell Mol Life Sci 77:475–479. https://doi.org/10.1007/s00018-019-03352-6

    Article  CAS  Google Scholar 

  64. Goldenstein H, Levy NS, Lipener YT, Levy AP (2013) Patient selection and vitamin E treatment in diabetes mellitus. Expert Rev Cardiovasc Ther 11:319–326. https://doi.org/10.1586/erc.12.187

    Article  CAS  PubMed Central  Google Scholar 

  65. González E, Danehower D, Daub ME (2007) Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5′-phosphate oxidase [PDX3] and the pyridoxal kinase [SOS4] genes involved in the vitamin B6 salvage pathway. Plant Physiol 145:985–996. https://doi.org/10.1104/pp.107.105189

    Article  CAS  PubMed Central  Google Scholar 

  66. Gordon BL, Galati J, Yang S, Katz PO, Scherl EJ (2020) Vitmin C deficiency: an under-recognized condition in Crohn’s disease. ACG Case Reports J 7:e00424. https://doi.org/10.14309/crj.0000000000000424

    Article  Google Scholar 

  67. Hasegawa H, Yatomi K, Mitome-Mishima Y, Miyamoto N, Tanaka R, Oishi H, Arai H, Hattori N, Urabe T (2020) Pioglitazone prevents hemorrhagic infarction after transient focal ischemia in type 2 diabetes. Neurosci Res. https://doi.org/10.1016/j.neures.2020.09.004

    Article  Google Scholar 

  68. Hochberg I, Berinstein EM, Milman U, Shapira C, Levy AP (2017) Interaction between the haptoglobin genotype and vitamin E on cardiovascular disease in diabetes. Curr DiabRep 17(6):42. https://doi.org/10.1007/s11892-017-0868-1

    Article  CAS  Google Scholar 

  69. Hochholzer W, Berg DD, Giugliano RP (2011) The facts behind niacin. Ther Adv Cardiovasc Dis 5(5):227–240. https://doi.org/10.1177/1753944711419197

    Article  CAS  Google Scholar 

  70. Homocysteine Lowering Trialists’ Collaboration (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82:806–812. https://doi.org/10.1093/ajcn/82.4.806

    Article  Google Scholar 

  71. Hwang ES, Song SB (2020) Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules 10(5):687. https://doi.org/10.3390/biom10050687

    Article  CAS  PubMed Central  Google Scholar 

  72. Ingles DP, Cruz Rodriguez JB, Garcia H (2020) Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Curr Cardiol Rep 22:22. https://doi.org/10.1007/s11886-020-1270

    Article  Google Scholar 

  73. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academies Press (US)

  74. Jakubczyk K, Kałduńska J, Dec K, Kawczuga D, Janda K (2020) Antioxidant properties of small-molecule non-enzymatic compounds. Pol Merkur Lekarski 48:128–132

    Google Scholar 

  75. Jeyakumar SM, Sheril A, Vajreswari A (2015) Chronic vitamin A-enriched diet feeding induces body weight gain and adiposity in lean and glucose-intolerant obese rats of WNIN/GR-Ob strain. Exp Physiol 100(11):1352–1361. https://doi.org/10.1113/EP085027

    Article  CAS  Google Scholar 

  76. Jeyakumar SM, Vajreswari A, Giridharan NV (2006) Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity (Silver Spring, Md.) 14(1):52–59. https://doi.org/10.1038/oby.2006.7

    Article  CAS  Google Scholar 

  77. Jounela AJ, Pirttiaho H, Palva IP (1974) Drug-induced malabsorption of vitamin B12. Acta Med Scand 196:267–269. https://doi.org/10.1111/j.0954-6820.1974.tb01008.x

    Article  CAS  Google Scholar 

  78. Julius U, Fischer S (2013) Nicotinic acid as a lipid-modifying drug—a review. Atheroscler Suppl 14:7e. https://doi.org/10.1016/j.atherosclerosissup.2012.10.036

    Article  CAS  Google Scholar 

  79. Kang I, Kim SW, Youn JH (2011) Effects of nicotinic acid on gene expression: potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J Clin Endocrinol Metab 96:3048–3055. https://doi.org/10.1210/jc.2011-1104

    Article  CAS  PubMed Central  Google Scholar 

  80. Kim J, Choi J, Kwon SY, McEvoy JW, Blaha MJ, Blumenthal RS, Guallar E, Zhao D, Michos ED (2018) Association of multivitamin and mineral supplementation and risk of cardiovascular disease: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 11:e004224. https://doi.org/10.1161/CIRCOUTCOMES.117.004224

    Article  Google Scholar 

  81. Kim J, Choi YH (2016) Physical activity, dietary vitamin C, and metabolic syndrome in the Korean adults: the Korea National Health and Nutrition Examination Survey 2008 to 2012. Public Health 135:30–37. https://doi.org/10.1016/j.puhe.2016.01.002

    Article  Google Scholar 

  82. Knapen MHJ, Braam LAJLM, Drummen NE, Bekers O, Hoeks APG, Vermeer C (2015) Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. Thromb Haemost 113:1135–1144. https://doi.org/10.1160/th14-08-0675

    Article  Google Scholar 

  83. Larrieta E, Vega-Monroy ML, Vital P, Aguilera A, German MS, Hafidi ME, Fernandez-Mejia C (2012) Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nutr Biochem 23(4):392–399. https://doi.org/10.1016/j.jnutbio.2011.01.003

    Article  CAS  Google Scholar 

  84. Larrieta E, Velasco F, Vital P, Lopez-Aceves T, Lazo-de-la-Vega-Monroy ML, Rojas A, Fernandez-Mejia C (2010) Pharmacological concentrations of biotin reduce serum triglycerides and the expression of lipogenic genes. Eur J Pharmacol 644(1–3):263–268

    Article  CAS  Google Scholar 

  85. Lazo de la Vega-Monroy ML, Larrieta E, German MS, Baez-Saldana A, Fernandez-Mejia C (2013) Effects of biotin supplementation in the diet on insulin secretion, islet gene expression, glucose homeostasis and beta-cell proportion. J Nutr Biochem 24:169–177. https://doi.org/10.1016/j.jnutbio.2012.03.020

    Article  CAS  Google Scholar 

  86. Lee GY, Han SN (2018) The role of vitamin E in immunity. Nutrients 10:1614. https://doi.org/10.3390/nu10111614

    Article  CAS  PubMed Central  Google Scholar 

  87. Lee SA, Yuen JJ, Jiang H, Kahn BB, Blaner WS (2016) Adipocyte-specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. Hepatology 64:1534–1546. https://doi.org/10.1002/hep.28659

    Article  CAS  Google Scholar 

  88. Li M, Shu X, Xu H, Zhang C, Yang L, Zhang L, Ji G (2016) Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 14:1–13. https://doi.org/10.1186/s12967-016-0987-5

    Article  CAS  Google Scholar 

  89. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J (2004) Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol 89–90(1–5):387–392. https://doi.org/10.1016/j.jsbmb.2004.03.004

    Article  CAS  Google Scholar 

  90. Lim K, Hamano T, Thadhani R (2018) Vitamin D and calcimimetics in cardiovascular disease. Semin Nephrol 238:251–266. https://doi.org/10.1016/j.semnephrol.2018.02.005

    Article  CAS  Google Scholar 

  91. Liu Z, Li P, Zhao ZH, Zhang Y, Ma ZM, Wang SX (2016) Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe -/- mice fed with high-fat diet. J Diabetes Res 2016.https://doi.org/10.1155/2016/1748065

  92. LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Vitamin B. [Updated 2016 May 9]. Accessed May 27, 2021 Available from: https://www.ncbi.nlm.nih.gov/books/NBK548710/

  93. Lukasova M, Malaval C, Gille A, Kero J, Offermanns S (2011) Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest 121:1163–1173. https://doi.org/10.1172/JCI41651

    Article  CAS  PubMed Central  Google Scholar 

  94. Maessen DE, Brouwers O, Gaens KH, Wouters K, Cleutjens JP, Janssen BJ, Miyata T, Stehouwer CD, Schalkwijk CG (2016) Delayed intervention with pyridoxamine improves metabolic function and prevents adipose tissue inflammation and insulin resistance in high-fat diet-induced obese mice. Diabetes 65:956–966. https://doi.org/10.2337/db15-1390

    Article  CAS  Google Scholar 

  95. Mahmoodi MR, Mehrabi Y, Kimiagar M, Rajah A (2019) Supplementation with omega-3 plus vitamin E and zinc plus vitamin C on metabolic syndrome components in postmenopausal women with type 2 diabetes. J Kerman Univ Med Sci 26:43–54

    Google Scholar 

  96. Marinho PM, Marcos AAA, Branco AMPC, Sakamoto V, Romano A, Schor P, Farah ME, Nascimento H, Belfort R Jr (2020) Results from the SERPICO-19 study-the role of retinal evaluation and in vivo vascular assessment in COVID-19. EClinicalMedicine 29:100655. https://doi.org/10.1016/j.eclinm.2020.100655

    Article  Google Scholar 

  97. Markel A (2011) The resurgence of niacin: from nicotinic acid to niaspan/laropiprant. Isr Med Assoc J 13:368–374

    Google Scholar 

  98. Martini L, Pecoraro L, Salvottini C, Piacentini G, Atkinson R, Pietrobelli A (2020) Appropriate and inappropriate vitamin supplementation in children. J Nutr Sci 9:e20–e20. https://doi.org/10.1017/jns.2020.12

    Article  CAS  PubMed Central  Google Scholar 

  99. Mascolo E, Vernì F (2020) Vitamin B6 and diabetes: relationship and molecular mechanisms. Int J Mol Sci 21.https://doi.org/10.3390/ijms21103669

  100. McCracken E, Monaghan M, Sreenivasan S (2018) Pathophysiology of the metabolic syndrome. Clin Dermatol 36:3669. https://doi.org/10.1016/j.clindermatol.2017.09.004

    Article  Google Scholar 

  101. McLaren DS, Kraemer K (2012) Vitamin A in health. World Rev Nutr Diet 103:33–51. https://doi.org/10.1159/000170954

    Article  CAS  Google Scholar 

  102. Mello A, Melo KR, Sousa A, Rolim Neto PJ, Silva R (2020) Product indiscriminate use of vitamin risks: a review. Crit Rev Food Sci Nutr 60(12):2067–2082. https://doi.org/10.1080/10408398.2019.1628003

    Article  CAS  Google Scholar 

  103. Meyer-Ficca M, Kirkland JB (2016) Niacin Advances in nutrition 7(3):556–558. https://doi.org/10.3945/an.115.011239

    Article  CAS  Google Scholar 

  104. Meyers CD, Kamanna VS, Kashyap ML (2004) Niacin therapy in atherosclerosis. Curr Opin Lipidol 15(6):659–665

    Article  CAS  Google Scholar 

  105. Ming Z, Legare DJ, Lautt WW (2009) Obesity, syndrome X, and diabetes: the role of HISS-dependent insulin resistance altered by sucrose, an antioxidant cocktail, and age. Can J Physiol Pharmacol 87:873–882. https://doi.org/10.1139/Y09-079

    Article  CAS  Google Scholar 

  106. Mitu O, Cirneala IA, Lupsan AI, Iurciuc M, Mitu I, Dimitriu DC, Costache AD, Petris AO, Costache II (2020) The effect of vitamin supplementation on subclinical atherosclerosis in patients without manifest cardiovascular diseases: never-ending hope or underestimated effect? Molecules 25(7):1717. https://doi.org/10.3390/molecules25071717

    Article  CAS  PubMed Central  Google Scholar 

  107. Mooney S, Leuendorf JE, Hendrickson C, Hellmann H (2009) Vitamin B6: a long known compound of surprising complexity. Molecules 14:329–351. https://doi.org/10.3390/molecules14010329

    Article  CAS  PubMed Central  Google Scholar 

  108. Moyer VA, U.S. Preventive Services Task Force (2014) Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: U.S. Preventive services Task Force recommendation statement. Ann Int Med 160(8):558–564

    Article  Google Scholar 

  109. Mozos I, Stoian D, Luca CT (2017) Crosstalk between vitamins A, B12, D, K, C, and E status and arterial stiffness. Dis Markers. https://doi.org/10.1155/2017/8784971

    Article  PubMed Central  Google Scholar 

  110. Murayama K, Eshak ES, Kinuta M, Nagao M, Cui R, Imano H, Ohira T, Iso H (2019) Association between vitamin B group supplementation with changes in % flow? Mediated dilatation and plasma homocysteine levels: a randomized controlled trial. J Clin Biochem Nutr 64:243–249. https://doi.org/10.3164/jcbn.17

    Article  Google Scholar 

  111. Muscogiuri G, Annweiler C, Duval G, Karras S, Tirabassi G, Salvio G, Balercia G, Kimball S, Kotsa K, Mascitelli L, Bhattoa HP, Colao A (2017) Vitamin D and cardiovascular disease: from atherosclerosis to myocardial infarction and stroke. Int J Cardiol 230. doi: https://doi.org/10.1016/j.ijcard.2016.12.053

  112. Nagashimada M, Ota T (2019) Role of vitamin E in nonalcoholic fatty liver disease. IUBMB Life 71:516–522. https://doi.org/10.1002/iub.1991

    Article  CAS  Google Scholar 

  113. Nakamura S, Li H, Adijiang A, Pischetsrieder M, Niwa T (2007) Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 22:2165–2174. https://doi.org/10.1093/ndt/gfm166

    Article  CAS  Google Scholar 

  114. National Center for Biotechnology Information (2021) PubChem Compound Summary for CID 5280795, Cholecalciferol. Accessed Modify (2021-09-05); Create (2004-09-16) Retrieved March 25, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Cholecalciferol

  115. NIH (2020) Vitamin B12. In: Heal. Prof. Fact Sheet. Accessed April 6, 2021 https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/

  116. NIH (2020) Vitamin B6. In: Heal. Prof. Fact Sheet. Accessed March 26, 2021 https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/

  117. Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 66:3–12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022

    Article  CAS  Google Scholar 

  118. Njus D, Kelley PM, Tu YJ, Schlegel HB (2020) Ascorbic acid: the chemistry underlying its antioxidant properties. Free Radic Biol Med 159:37–43

    Article  CAS  Google Scholar 

  119. Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, Kiernan UA, Phillips DA, Maruyama H, Kraus BJ, Usheva A, Davis RJ, Smith U, Kahn BB (2012) Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol 32:2010–2019. https://doi.org/10.1128/mcb.06193-11

    Article  CAS  PubMed Central  Google Scholar 

  120. Noy N (2016) Non-classical transcriptional activity of retinoic acid. Subcell Biochem 81:179–199. https://doi.org/10.1007/978-94-024-0945-1_7

    Article  CAS  Google Scholar 

  121. Nur SM, Rath S, Ahmad V, Ahmad A, Ateeq B, Khan MI (2021) Nutritive vitamins as epidrugs. Crit Rev Food Sci Nutr 61(1):1–13. https://doi.org/10.1080/10408398.2020.1712674

    Article  CAS  Google Scholar 

  122. O’Leary F, Samman S (2010) Vitamin B12 in health and disease. Nutrients 2:299–316. https://doi.org/10.3390/nu2030299

    Article  CAS  PubMed Central  Google Scholar 

  123. Olsen T, Blomhoff R (2020) Retinol, retinoic acid, and retinol-binding protein 4 are differentially associated with cardiovascular disease, type 2 diabetes, and obesity: an overview of human studies. Adv Nutr 11(3):644–666. https://doi.org/10.1093/advances/nmz131

    Article  Google Scholar 

  124. O Cu, ruc, Akpinar YE, Amikishiyev S, Uzum AK, Salmaslioglu A, Gurdol F, Omer B (2017) Hypovitaminosis D is associated with endothelial dysfunction in patients with metabolic syndrome. Curr Vasc Pharmacol 15(2):152–157. https://doi.org/10.2174/1570161114666161003093443

    Article  CAS  Google Scholar 

  125. Otsuka R, Imai T, Kato Y, Ando F, Shimokata H (2010) Relationship between number of metabolic syndrome components and dietary factors in middle-aged and elderly Japanese subjects. Hypertens Res 33:548–554. https://doi.org/10.1038/hr.2010.29

    Article  CAS  Google Scholar 

  126. Ozfirat Z, Chowdhury TA (2010) Vitamin D deficiency and type 2 diabetes. Postgrad Med J 86:18–25. https://doi.org/10.1136/pgmj.2009.078626 (quiz 24)

    Article  CAS  Google Scholar 

  127. Padilla PA, Fuge EK, Crawford ME, Errett A, Werner-Washburne M (1998) The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation. J Bacteriol 180:5718–5726. https://doi.org/10.1128/jb.180.21.5718-5726.1998

    Article  CAS  PubMed Central  Google Scholar 

  128. Pastén-Hidalgo K, Riverón-Negrete L, Sicilia-Argumedo G, Canul-Medina G, Salazar-Anzures T, Tapia-Rodríguez M, Hernández-González EO, Roa-Espitia AL, Cedillo-Peláez C, Fernandez-Mejia C (2020) Dietary biotin supplementation impairs testis morphology and sperm quality. J Med Food 23:535–544. https://doi.org/10.1089/jmf.2019.0137

    Article  CAS  Google Scholar 

  129. Peng Z, Wang Y, Huang X, Zhu Q, Zhao Y, Xie H, Wu J (2021) Dietary vitamin intake and risk of metabolic syndrome among centenarians in China. Exp Ther Med 21(2):105. https://doi.org/10.3892/etm.2020.9537

    Article  CAS  Google Scholar 

  130. Perduca M, Nicolis S, Mannucci B, Galliano M, Monaco HL (2018) Human plasma retinol-binding protein (RBP4) is also a fatty acid-binding protein. Biochim Biophys Acta - Mol Cell Biol Lipids 1863:458–466. https://doi.org/10.1016/j.bbalip.2018.01.010

    Article  CAS  Google Scholar 

  131. Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, Povoroznyuk V, Balatska N, Barbosa AP, Karonova T, Rudenka E, Misiorowski W, Zakharova I, Rudenka A, Łukaszkiewicz J, Marcinowska-Suchowierska E, Łaszcz N, Abramowicz P, Bhattoa HP, Wimalawansa SJ (2018) Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol 175:125–135. https://doi.org/10.1016/j.jsbmb.2017.01.021

    Article  CAS  Google Scholar 

  132. Qadri SM, Eberhard M, Mahmud H, Föller M, Lang F (2009) Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K (3) (menadione). Eur J Pharmacol 623(1–3):10–13. https://doi.org/10.1016/j.ejphar.2009.09.011

    Article  CAS  Google Scholar 

  133. Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5:949–960. https://doi.org/10.1016/S1474-4422(06)70598-1

    Article  CAS  Google Scholar 

  134. Riveron-Negrete L, Fernandez-Mejia C (2017) Pharmacological effects of biotin in animals. Mini-Reviews Med Chem 17:529–540. https://doi.org/10.2174/1389557516666160923132611

    Article  CAS  Google Scholar 

  135. Romani M, Hofer DC, Katsyuba E, Auwerx J (2019) Niacin: an old lipid drug in a new NAD(+) dress. J Lipid Res 60:741–746. https://doi.org/10.1194/jlr.S092007

    Article  CAS  PubMed Central  Google Scholar 

  136. Saposnik G (2011) The role of vitamin B in stroke prevention: a journey from observational studies to clinical trials and critique of the VITAmins to Prevent Stroke (VITATOPS). Stroke 42(3):838–842. https://doi.org/10.1161/STROKEAHA.110.608356

    Article  Google Scholar 

  137. Sato K, Gosho M, Yamamoto T, Kobayashi Y, Ishii N, Ohashi T, Nakade Y, Ito K, Fukuzawa Y, Yoneda M (2015) Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Nutrition 31:923–930. https://doi.org/10.1016/j.nut.2014.11.018

    Article  CAS  Google Scholar 

  138. Schurgers LJ, Spronk HMH, Soute BAM, Schiffers PM, DeMey JGR, Vermeer C (2007) Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood. https://doi.org/10.1182/blood-2006-07-035345

    Article  Google Scholar 

  139. Schwingshackl L, Boeing H, Stelmach-Mardas M, Gottschald M, Dietrich S, Hoffmann G, Chaimani A (2017) Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: a systematic review and meta-analysis of primary prevention trials. Advances Nutrition 8(1):27–39

    Article  Google Scholar 

  140. Scragg R, Sowers MF, Bell C (2004) Serum 25-hydroxyvitamin D, diabetes and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 27:2813e18

    Article  Google Scholar 

  141. Sethi A, Sankar MJ, Thukral A, Saxena R, Chaurasia S, Agarwal R (2019) Prophylactic vitamin K administration in neonates on prolonged antibiotic therapy: a randomized controlled trial. Indian Pediatr 56:463–467. https://doi.org/10.1007/s13312-019-1569-4

    Article  Google Scholar 

  142. Silvares RR, da Silva Pereira ENG, Flores EEI, Rodrigues KL, Silva AR, Gonçalves-de-Albuquerque CF, Daliry A (2019) High-fat diet-induced kidney alterations in rats with metabolic syndrome: endothelial dysfunction and decreased antioxidant defense. Diabetes, Metab Syndr Obes Targets Ther 12:1773–1781. https://doi.org/10.2147/DMSO.S211253

    Article  CAS  Google Scholar 

  143. SINU (Società Italiana di Nutrizione Umana) (2017) LARN: Livelli di Assunzione Italiana, Nutrienti ed energia per la popolazione (LARN: Italian intake levels, nutrients and energy for the population). Rome: SICS Editore

  144. Soleymani H, Ghorbani M, Allahverdi A, Shojaeilangari S, Naderi-Manesh H (2019) Activation of human insulin by vitamin E: a molecular dynamics simulation study. J Mol Graph Model 91:194–203. https://doi.org/10.1016/j.jmgm.2019.06.006

    Article  CAS  Google Scholar 

  145. Sugita Y, Shirakawa H, Sugimoto R, Furukawa Y, Komai M (2008) Effect of biotin treatment on hepatic gene expression in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 72:1290–1298. https://doi.org/10.1271/bbb.70781

    Article  CAS  Google Scholar 

  146. Sultan S, Murarka S, Jahangir A, Mookadam F, Tajik AJ, Jahangir A (2017) Vitamins for cardiovascular diseases: is the expense justified? Cardiol Rev 25(6):298–308. https://doi.org/10.1097/CRD.0000000000000150

    Article  Google Scholar 

  147. Sunkara A, Raizner A (2019) Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Methodist Debakey Cardiovasc J 15(3):179–184

    Article  Google Scholar 

  148. Takahashi-Iñiguez T, García-Hernandez E, Arreguín-Espinosa R, Flores ME (2012) Role of vitamin B12 on methylmalonyl-CoA mutase activity. J Zhejiang Univ Sci B 13:423–437. https://doi.org/10.1631/jzus.b1100329

    Article  PubMed Central  Google Scholar 

  149. Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X (2011) Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice. Biochim Biophys Acta Mol Cell Biol Lipids 1811:1045–1053. https://doi.org/10.1016/j.bbalip.2011.09.011

    Article  CAS  Google Scholar 

  150. Thomas-Valdés S, Tostes M, das GV, Anunciação PC, da Silva BP, Sant’Ana HMP, (2017) Association between vitamin deficiency and metabolic disorders related to obesity. Crit Rev Food Sci Nutr 57:3332–3343. https://doi.org/10.1080/10408398.2015.1117413

    Article  CAS  Google Scholar 

  151. Thompson SJ, Sargsyan A, Lee SA, Yuen JJ, Cai J, Smalling R, Ghyselinck N, Mark M, Blaner WS, Graham TE (2017) Hepatocytes are the principal source of circulating RBP4 in mice. Diabetes 66:58–63. https://doi.org/10.2337/db16-0286

    Article  CAS  Google Scholar 

  152. Traber MG (2014) Vitamin E inadequacy in humans: causes and consequences. Adv Nutr 5:503–514. https://doi.org/10.3945/an.114.006254

    Article  CAS  PubMed Central  Google Scholar 

  153. Trasino SE, Tang XH, Jessurun J, Gudas LJ (2015) Obesity leads to tissue, but not serum vitamin A deficiency. Sci Rep 5:15893. https://doi.org/10.1038/srep15893

    Article  CAS  PubMed Central  Google Scholar 

  154. Tully DB, Allgood VE, Cidlowski JA (2018) Nutrition and gene expression. In: Berdanier CD, Hargrove JL (eds) Nutrition and Gene Expression, 1st edn. CRC Press, Boca Raton, pp 547–568

    Chapter  Google Scholar 

  155. Tuteja S, Qu L, Vujkovic M, Dunbar RL, Chen J, Derohannessian S, Rader DJ (2018) Genetic variants associated with plasma lipids are associated with the lipid response to niacin. J Am Heart Assoc 7:e03488. https://doi.org/10.1161/JAHA.117.e008461

    Article  PubMed Central  Google Scholar 

  156. Vajdi M, Farhangi MA, Nikniaz L (2020) Diet-derived nutrient patterns and components of metabolic syndrome: a cross-sectional community-based study. BMC Endocr Disord 20:1–13. https://doi.org/10.1186/s12902-020-0547-0

    Article  CAS  Google Scholar 

  157. Van de Kamp JL, Smolen A (1995) Response of kynurenine pathway enzymes to pregnancy and dietary level of vitamin B-6. Pharmacol Biochem Behav 51:753–758. https://doi.org/10.1016/0091-3057(95)00026-S

    Article  Google Scholar 

  158. Wallert M, Börmel L, Lorkowski S (2021) Inflammatory diseases and vitamin E—what do we know and where do we go? Mol Nutr Food Res 65(1):e2000097. https://doi.org/10.1002/mnfr.202000097

    Article  CAS  Google Scholar 

  159. Wanders D, Graff EC, White BD, Judd RL (2013) Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice. PLoS ONE 8:e71285. https://doi.org/10.1371/journal.pone.0071285

    Article  CAS  PubMed Central  Google Scholar 

  160. Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxidants Redox Signal 17:282–301. https://doi.org/10.1089/ars.2011.4381

    Article  CAS  Google Scholar 

  161. Wang Y, Jin Y, Wang Y, Li L, Liao Y, Zhang Y, Yu D (2019) The effect of folic acid in patients with cardiovascular disease: a systematic review and meta-analysis. Medicine (Baltimore) 98:e17095. https://doi.org/10.1097/MD.0000000000017095

    Article  CAS  Google Scholar 

  162. Wang Z, Wang Z, Zhu J, Long X, Yan J (2018) Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE-/- mice as well as smooth muscle cells. Vascular 26(1):18–26. https://doi.org/10.1177/1708538117713395

    Article  CAS  Google Scholar 

  163. Watanabe-Kamiyama M, Kamiyama S, Horiuchi K, Ohinata K, Shirakawa H, Furukawa Y, Komai M (2008) Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br J Nutr 99:756–763. https://doi.org/10.1017/S0007114507841122

    Article  CAS  Google Scholar 

  164. Weber D, Grune T (2012) The contribution of β-carotene to vitamin A supply of humans. Mol Nutr Food Res 56:251–258. https://doi.org/10.1002/mnfr.201100230

    Article  CAS  Google Scholar 

  165. Wong SK, Chin KY, Ima-Nirwana S (2020) Vitamin C: a review on its role in the management of metabolic syndrome. Int J Med Sci 17:1625–1638. https://doi.org/10.7150/ijms.47103

    Article  CAS  PubMed Central  Google Scholar 

  166. Wu M, Xu K, Wu Y, Lin L (2019) Role of vitamin D in patients with heart failure with reduced ejection fraction. Am J Cardiovasc Drugs 19:541–552. https://doi.org/10.1007/s40256-019-00357-1

    Article  Google Scholar 

  167. Yanagitani A, Yamada S, Yasui S, Shimomura T, Murai R, Murawaki Y, Hashiguchi K, Kanbe T, Saeki T, Ichiba M, Tanabe Y, Yoshida Y, Morino SI, Kurimasa A, Usuda N, Yamazaki H, Kunisada T, Ito H, Murawaki Y, Shiota G (2004) Retinoic acid receptor α dominant negative form causes steatohepatitis and liver tumors in transgenic mice. Hepatology 40:366–375. https://doi.org/10.1002/hep.20335

    Article  CAS  Google Scholar 

  168. Yang D, Vuckovic MG, Smullin CP, Kim M, Lo CPS, Devericks E, Yoo HS, Tintcheva M, Deng Y, Napoli JL (2018) Modest decreases in endogenous all-trans-retinoic acid produced by a mouse Rdh10 heterozygote provoke major abnormalities in adipogenesis and lipid metabolism. Diabetes 67:662–673. https://doi.org/10.2337/db17-0946

    Article  CAS  PubMed Central  Google Scholar 

  169. Yoshida M, Jacques PF, Meigs JB, Saltzman E, Shea MK, Gundberg C, Dawson-Hughes B, Dallal G, Booth SL (2008) Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 31(11):2092–2096. https://doi.org/10.2337/dc08-1204

    Article  CAS  PubMed Central  Google Scholar 

  170. Zhong G, Kirkwood J, Won KJ, Tjota N, Jeong H, Isoherranen N (2019) Characterization of vitamin A metabolome in human livers with and without nonalcoholic fatty liver disease. J Pharmacol Exp Ther 370:92–103. https://doi.org/10.1124/jpet.119.258517

    Article  CAS  PubMed Central  Google Scholar 

  171. Zittermann A, Pilz S (2019) Vitamin D and cardiovascular disease: an update. Anticancer Res 39:4627–4635. https://doi.org/10.21873/anticanres.13643

    Article  CAS  Google Scholar 

  172. Zöhrer E, Alisi A, Jahnel J, Mosca A, Della Corte C, Crudele A, Fauler G, Nobili V (2017) Efficacy of docosahexaenoic acid–choline–vitamin E in paediatric NASH: a randomized controlled clinical trial. Appl Physiol Nutr Metab 42:948–954. https://doi.org/10.1139/apnm-2016-0689

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a grant from the Coordination of Scientific Research of Universidad Michoacana de San Nicolás de Hidalgo (C.I.C.-UMSNH).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed: Asdrubal Aguilera Méndez. Wrote the paper: Asdrubal Aguilera Méndez, Daniel Boone Villa, Renato Nieto Aguilar. Literature search and data analysis: Asdrubal Aguilera Méndez, Daniel Boone Villa, Renato Nieto Aguilar. Critically revised the work: Asdrubal Aguilera Méndez, Daniel Boone Villa, Alfredo Saavedra Molina, Santiago Villafaña Rauda, Janeth Ventura Sobrevilla.

Corresponding author

Correspondence to Asdrubal Aguilera-Méndez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera-Méndez, A., Boone-Villa, D., Nieto-Aguilar, R. et al. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch - Eur J Physiol 474, 117–140 (2022). https://doi.org/10.1007/s00424-021-02619-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02619-x

Keywords

Navigation