Skip to main content

Non-classical Transcriptional Activity of Retinoic Acid

  • Chapter
  • First Online:
The Biochemistry of Retinoid Signaling II

Part of the book series: Subcellular Biochemistry ((SCBI,volume 81))

Abstract

It has long been established that the transcriptional activity of retinoic acid (RA) is mediated by members of the nuclear receptor family of ligand-activated transcription factors termed RA receptors (RARs). More recent observations have established that RA also activates an additional nuclear receptor, PPARβ/δ. Partitioning RA between RARs and PPARβ/δ is governed by different intracellular lipid-binding proteins: cellular RA binding protein 2 (CRABP2) delivers RA to nuclear RARs and a fatty acid binding protein (FABP5) delivers the hormone from the cytosol to nuclear PPARβ/δ. Consequently, RA signals through RARs in CRABP2-expressing cells, but activates PPARβ/δ in cells that express a high level of FABP5. RA elicits different and sometimes opposing responses in cells that express different FABP5/CRABP2 ratios because PPARβ/δ and RARs regulate the expression of distinct sets of genes. An overview of the observations that led to the discovery of this non-classical activity of RA are presented here, along with a discussion of evidence demonstrating the involvement of the dual transcriptional activities of RA in regulating energy homeostasis, insulin responses, and adipocyte and neuron differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANGLP4:

angiopoietin-like protein 4

C/EBP:

CCAAT enhancer-binding protein

CRABP:

cellular retinoic-binding protein

CRBP:

cellular retinol-binding protein

ERK:

extracellular signal-regulated kinase

FABP:

fatty acid binding protein

ILK:

integrin-linked kinase

iLBP:

intracellular lipid-binding protein

PDPK1:

3-Phosphoinositide Dependent Protein Kinase

PLIN2:

perilipin 2

PPAR:

peroxisome proliferator activated receptor

Pref-1:

preadipocyte factor 1

PTEN:

phosphatase and tensin homolog

RA:

retinoic acid

RAR:

RA receptor

VEGF:

vascular endothelial growth factor

References

  1. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International union of pharmacology. Lx. Retinoic acid receptors. Pharmacol Rev 58:712–725

    Article  CAS  PubMed  Google Scholar 

  2. Shaw N, Elholm M, Noy N (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 278:41589–41592

    Article  CAS  PubMed  Google Scholar 

  3. Berry DC, Noy N (2007) Is pparbeta/delta a retinoid receptor? PPAR Res 2007:73256

    Article  PubMed  CAS  Google Scholar 

  4. Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins i and ii in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    Article  CAS  PubMed  Google Scholar 

  5. Sessler RJ, Noy N (2005) A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-ii. Mol Cell 18:343–353

    Article  CAS  PubMed  Google Scholar 

  6. Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22:5114–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolbach SB, Howe PR (1978) Nutrition classics. J Exp Med 42:753–777. Tissue changes following deprivation of fat-soluble a vitamin. S. Burt wolbach and percy r. Howe. Nutrition reviews 1978;36:16–19

    Article  Google Scholar 

  8. Chapellier B, Mark M, Messaddeq N, Calleja C, Warot X, Brocard J, Gerard C, Li M, Metzger D, Ghyselinck NB, Chambon P (2002) Physiological and retinoid-induced proliferations of epidermis basal keratinocytes are differently controlled. EMBO J 21:3402–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soprano DR, Qin P, Soprano KJ (2004) Retinoic acid receptors and cancers. Annu Rev Nutr 24:201–221

    Article  CAS  PubMed  Google Scholar 

  10. Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1:181–193

    Article  CAS  PubMed  Google Scholar 

  11. Verma AK, Conrad EA, Boutwell RK (1982) Differential effects of retinoic acid and 7,8-benzoflavone on the induction of mouse skin tumors by the complete carcinogenesis process and by the initiation-promotion regimen. Cancer Res 42:3519–3525

    CAS  PubMed  Google Scholar 

  12. Manor D, Shmidt EN, Budhu A, Flesken-Nikitin A, Zgola M, Page R, Nikitin AY, Noy N (2003) Mammary carcinoma suppression by cellular retinoic acid binding protein-ii. Cancer Res 63:4426–4433

    CAS  PubMed  Google Scholar 

  13. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  14. Bocher V, Pineda-Torra I, Fruchart JC, Staels B (2002) Ppars: Transcription factors controlling lipid and lipoprotein metabolism. Ann N Y Acad Sci 967:7–18

    Article  CAS  PubMed  Google Scholar 

  15. Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol 20:5119–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cimini A, Bernardo A, Cifone MG, Di Marzio L, Di Loreto S (2003) Tnfalpha downregulates ppardelta expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. Glia 41:3–14

    Article  PubMed  Google Scholar 

  17. Tan NS, Michalik L, Desvergne B, Wahli W (2004) Peroxisome proliferator-activated receptor-beta as a target for wound healing drugs. Expert Opin Ther Targets 8:39–48

    Article  CAS  PubMed  Google Scholar 

  18. Tan NS, Michalik L, Noy N, Yasmin R, Pacot C, Heim M, Fluhmann B, Desvergne B, Wahli W (2001) Critical roles of ppar beta/delta in keratinocyte response to inflammation. Genes Dev 15:3263–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Michalik L, Wahli W (2007) Peroxisome proliferator-activated receptors (ppars) in skin health, repair and disease. Biochim Biophys Acta 1771:991–998

    Article  CAS  PubMed  Google Scholar 

  20. Icre G, Wahli W, Michalik L (2006) Functions of the peroxisome proliferator-activated receptor (ppar) alpha and beta in skin homeostasis, epithelial repair, and morphogenesis. J Investig dermatol 126(Suppl):30–35

    Article  CAS  Google Scholar 

  21. Di-Poi N, Tan NS, Michalik L, Wahli W, Desvergne B (2002) Antiapoptotic role of pparbeta in keratinocytes via transcriptional control of the akt1 signaling pathway. Mol Cell 10:721–733

    Article  CAS  PubMed  Google Scholar 

  22. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (ppars): tissue distribution of ppar-alpha, −beta, and -gamma in the adult rat. Endocrinology 137:354–366

    CAS  PubMed  Google Scholar 

  23. Lemberger T, Braissant O, Juge-Aubry C, Keller H, Saladin R, Staels B, Auwerx J, Burger AG, Meier CA, Wahli W (1996) Ppar tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci 804:231–251

    Article  CAS  PubMed  Google Scholar 

  24. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by ppardelta. PLoS Biol 2:e294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Wang H, Guo Y, Ning W, Katkuri S, Wahli W, Desvergne B, Dey SK, DuBois RN (2006) Crosstalk between peroxisome proliferator-activated receptor delta and vegf stimulates cancer progression. Proc Natl Acad Sci U S A 103:19069–19074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di-Poi N, Michalik L, Tan NS, Desvergne B, Wahli W (2003) The anti-apoptotic role of pparbeta contributes to efficient skin wound healing. J Steroid Biochem Mol Biol 85:257–265

    Article  CAS  PubMed  Google Scholar 

  28. Wagner KD, Benchetrit M, Bianchini L, Michiels JF, Wagner N (2011) Peroxisome proliferator-activated receptor beta/delta (pparbeta/delta) is highly expressed in liposarcoma and promotes migration and proliferation. J Pathol 224:575–588

    Article  CAS  PubMed  Google Scholar 

  29. Tan NS, Icre G, Montagner A, Bordier-ten-Heggeler B, Wahli W, Michalik L (2007) The nuclear hormone receptor peroxisome proliferator-activated receptor beta/delta potentiates cell chemotactism, polarization, and migration. Mol Cell Biol 27:7161–7175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, Finkernagel F, Obert J, Lieber S, Scharfe M, Jarek M, Toth PM, Scheer F, Diederich WE, Reinartz S, Grosse R, Muller-Brusselbach S, Muller R (2013) Inverse pparbeta/delta agonists suppress oncogenic signaling to the angptl4 gene and inhibit cancer cell invasion. Oncogene 32:5241–5252

    Article  CAS  PubMed  Google Scholar 

  31. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schug TT, Berry DC, Toshkov IA, Cheng L, Nikitin AY, Noy N (2008) Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from pparbeta/delta to rar. Proc Natl Acad Sci U S A 105:7546–7551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morgan E, Kannan-Thulasiraman P, Noy N (2010) Involvement of fatty acid binding protein 5 and pparbeta/delta in prostate cancer cell growth. PPAR Res 2010:9

    Article  CAS  Google Scholar 

  34. Levi L, Lobo G, Doud MK, von Lintig J, Seachrist D, Tochtrop GP, Noy N (2013) Genetic ablation of the fatty acid binding protein fabp5 suppresses her2-induced mammary tumorigenesis. Cancer Res 73:4770–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kannan-Thulasiraman P, Seachrist DD, Mahabeleshwar GH, Jain MK, Noy N (2010) Fatty acid-binding protein 5 and pparbeta/delta are critical mediators of epidermal growth factor receptor-induced carcinoma cell growth. J Biol Chem 285:19106–19115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montagner A, Delgado MB, Tallichet-Blanc C, Chan JS, Sng MK, Mottaz H, Degueurce G, Lippi Y, Moret C, Baruchet M, Antsiferova M, Werner S, Hohl D, Saati TA, Farmer PJ, Tan NS, Michalik L, Wahli W (2014) Src is activated by the nuclear receptor peroxisome proliferator-activated receptor beta/delta in ultraviolet radiation-induced skin cancer. EMBO Mol Med 6:80–98

    Article  CAS  PubMed  Google Scholar 

  37. Fauconnet S, Lascombe I, Chabannes E, Adessi GL, Desvergne B, Wahli W, Bittard H (2002) Differential regulation of vascular endothelial growth factor expression by peroxisome proliferator-activated receptors in bladder cancer cells. J Biol Chem 277:23534–23543

    Article  CAS  PubMed  Google Scholar 

  38. Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS (2012) Emerging roles of angiopoietin-like 4 in human cancer. Mol Can Res: MCR 10:677–688

    Article  CAS  PubMed  Google Scholar 

  39. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143

    Article  CAS  PubMed  Google Scholar 

  40. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT Jr, McKee DD, Moore JT, Willson TM (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 98:13919–13924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV (1999) Molecular recognition of fatty acids by peroxisome proliferator- activated receptors. Mol Cell 3:397–403

    Article  CAS  PubMed  Google Scholar 

  42. Fyffe SA, Alphey MS, Buetow L, Smith TK, Ferguson MA, Sorensen MD, Bjorkling F, Hunter WN (2006) Recombinant human ppar-beta/delta ligand-binding domain is locked in an activated conformation by endogenous fatty acids. J Mol Biol 356:1005–1013

    Article  CAS  PubMed  Google Scholar 

  43. Kersten S, Desvergne B, Wahli W (2000) Roles of ppars in health and disease. Nature 405:421–424

    Article  CAS  PubMed  Google Scholar 

  44. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A 94:4312–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    CAS  PubMed  Google Scholar 

  46. Schmuth M, Haqq CM, Cairns WJ, Holder JC, Dorsam S, Chang S, Lau P, Fowler AJ, Chuang G, Moser AH, Brown BE, Mao-Qiang M, Uchida Y, Schoonjans K, Auwerx J, Chambon P, Willson TM, Elias PM, Feingold KR (2004) Peroxisome proliferator-activated receptor (ppar)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J Investig Dermatol 122:971–983

    Article  CAS  PubMed  Google Scholar 

  47. Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor fiaf, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275:28488–28493

    Article  CAS  PubMed  Google Scholar 

  48. Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348(Pt 3):481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Storch J, Corsico B (2008) The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 28:73–95

    Article  CAS  PubMed  Google Scholar 

  50. Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 5:170–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hostetler HA, McIntosh AL, Atshaves BP, Storey SM, Payne HR, Kier AB, Schroeder F (2009) L-fabp directly interacts with pparalpha in cultured primary hepatocytes. J Lipid Res 50:1663–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ayers SD, Nedrow KL, Gillilan RE, Noy N (2007) Continuous nucleocytoplasmic shuttling underlies transcriptional activation of ppargamma by fabp4. Biochemistry 46:6744–6752

    Article  CAS  PubMed  Google Scholar 

  53. Budhu A, Gillilan R, Noy N (2001) Localization of the rar interaction domain of cellular retinoic acid binding protein-ii. J Mol Biol 305:939–949

    Article  CAS  PubMed  Google Scholar 

  54. Budhu AS, Noy N (2002) Direct channeling of retinoic acid between cellular retinoic acid-binding protein ii and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol 22:2632–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marcelino AM, Smock RG, Gierasch LM (2006) Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins 63:373–384

    Article  CAS  PubMed  Google Scholar 

  56. Coe NR, Simpson MA, Bernlohr DA (1999) Targeted disruption of the adipocyte lipid-binding protein (ap2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res 40:967–972

    CAS  PubMed  Google Scholar 

  57. Gillilan RE, Ayers SD, Noy N (2007) Structural basis for activation of fatty acid-binding protein 4. J Mol Biol 372:1246–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA (2014) Structural basis for ligand regulation of the fatty acid binding protein 5, peroxisome proliferator activated receptor beta/delta (fabp5-pparbeta/delta) signaling pathway. J Biol Chem 289:14941–14954

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chook YM, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11:703–715

    Article  CAS  PubMed  Google Scholar 

  60. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509

    Article  CAS  PubMed  Google Scholar 

  61. Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Article  CAS  PubMed  Google Scholar 

  62. Hodel MR, Corbett AH, Hodel AE (2001) Dissection of a nuclear localization signal. J Biol Chem 276:1317–1325

    Article  CAS  PubMed  Google Scholar 

  63. Dingwall C, Laskey RA (1991) Nuclear targeting sequences--a consensus? Trends Biochem Sci 16:478–481

    Article  CAS  PubMed  Google Scholar 

  64. Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (fabps): function, structure and polymorphism. J Appl Genet 47:39–48

    Article  PubMed  Google Scholar 

  65. Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133

    Article  CAS  PubMed  Google Scholar 

  66. Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture Ii. Factors affecting the adipose conversion. Cell 5:19–27

    Article  CAS  PubMed  Google Scholar 

  67. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  CAS  PubMed  Google Scholar 

  68. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    CAS  PubMed  Google Scholar 

  69. Smas CM, Chen L, Zhao L, Latasa MJ, Sul HS (1999) Transcriptional repression of pref-1 by glucocorticoids promotes 3 t3-l1 adipocyte differentiation. J Biol Chem 274:12632–12641

    Article  CAS  PubMed  Google Scholar 

  70. Shi XM, Blair HC, Yang X, McDonald JM, Cao X (2000) Tandem repeat of c/ebp binding sites mediates ppargamma2 gene transcription in glucocorticoid-induced adipocyte differentiation. J Cell Biochem 76:518–527

    Article  CAS  PubMed  Google Scholar 

  71. Pantoja C, Huff JT, Yamamoto KR (2008) Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol Biol Cell 19:4032–4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang JW, Klemm DJ, Vinson C, Lane MD (2004) Role of creb in transcriptional regulation of ccaat/enhancer-binding protein beta gene during adipogenesis. J Biol Chem 279:4471–4478

    Article  CAS  PubMed  Google Scholar 

  73. Petersen RK, Madsen L, Pedersen LM, Hallenborg P, Hagland H, Viste K, Doskeland SO, Kristiansen K (2008) Cyclic amp (camp)-mediated stimulation of adipocyte differentiation requires the synergistic action of epac- and camp-dependent protein kinase-dependent processes. Mol Cell Biol 28:3804–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reusch JE, Colton LA, Klemm DJ (2000) Creb activation induces adipogenesis in 3 t3-l1 cells. Mol Cell Biol 20:1008–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Foulkes NS, Borrelli E, Sassone-Corsi P (1991) Crem gene: Use of alternative DNA-binding domains generates multiple antagonists of camp-induced transcription. Cell 64:739–749

    Article  CAS  PubMed  Google Scholar 

  76. Don J, Stelzer G (2002) The expanding family of creb/crem transcription factors that are involved with spermatogenesis. Mol Cell Endocrinol 187:115–124

    Article  CAS  PubMed  Google Scholar 

  77. Sassone-Corsi P (1995) Transcription factors responsive to camp. Annu Rev Cell Dev Biol 11:355–377

    Article  CAS  PubMed  Google Scholar 

  78. Murray T, Russell TR (1980) Inhibition of adipose conversion in 3 t3-l2 cells by retinoic acid. J Supramol Struct 14:255–266

    Article  CAS  PubMed  Google Scholar 

  79. Sato M, Hiragun A, Mitsui H (1980) Preadipocytes possess cellular retinoid binding proteins and their differentiation is inhibited by retinoids. Biochem Biophys Res Commun 95:1839–1845

    Article  CAS  PubMed  Google Scholar 

  80. Kuri-Harcuch W (1982) Differentiation of 3 t3-f442a cells into adipocytes is inhibited by retinoic acid. Differentiation 23:164–169

    Article  CAS  PubMed  Google Scholar 

  81. Schwarz EJ, Reginato MJ, Shao D, Krakow SL, Lazar MA (1997) Retinoic acid blocks adipogenesis by inhibiting c/ebpbeta-mediated transcription. Mol Cell Biol 17:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xue JC, Schwarz EJ, Chawla A, Lazar MA (1996) Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of ppargamma. Mol Cell Biol 16:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marchildon F, St-Louis C, Akter R, Roodman V, Wiper-Bergeron NL (2010) Transcription factor smad3 is required for the inhibition of adipogenesis by retinoic acid. J Biol Chem 285:13274–13284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sul HS (2009) Minireview: Pref-1: Role in adipogenesis and mesenchymal cell fate. Mol Endocrinol 23:1717–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang Y, Zhao L, Smas C, Sul HS (2010) Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol Cell Biol 30:3480–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N (2012) Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 61:1112–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK (2003) The kruppel-like factor klf2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278:2581–2584

    Article  PubMed  CAS  Google Scholar 

  88. Wu J, Srinivasan SV, Neumann JC, Lingrel JB (2005) The klf2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44:11098–11105

    Article  CAS  PubMed  Google Scholar 

  89. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 29:3286–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rangwala SM, Lazar MA (2000) Transcriptional control of adipogenesis. Annu Rev Nutr 20:535–559

    Article  CAS  PubMed  Google Scholar 

  91. Barish GD, Narkar VA, Evans RM (2006) Ppar delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM (2006) Ppardelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 103:3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP (2007) Nuclear receptors pparbeta/delta and pparalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM (2008) Ampk and ppardelta agonists are exercise mimetics. Cell 134:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Evans RM, Barish GD, Wang YX (2004) Ppars and the complex journey to obesity. Nat Med 10:355–361

    Article  CAS  PubMed  Google Scholar 

  96. Gervois P, Torra IP, Fruchart JC, Staels B (2000) Regulation of lipid and lipoprotein metabolism by ppar activators. Clin Chem Lab Med 38:3–11

    Article  CAS  PubMed  Google Scholar 

  97. Rabelo R, Reyes C, Schifman A, Silva JE (1996) A complex retinoic acid response element in the uncoupling protein gene defines a novel role for retinoids in thermogenesis. Endocrinology 137:3488–3496

    CAS  PubMed  Google Scholar 

  98. Rottman JN, Widom RL, Nadal-Ginard B, Mahdavi V, Karathanasis SK (1991) A retinoic acid-responsive element in the apolipoprotein ai gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 11:3814–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765

    Article  CAS  PubMed  Google Scholar 

  100. Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262

    Article  CAS  PubMed  Google Scholar 

  101. McBurney MW, Jones-Villeneuve EM, Edwards MK, Anderson PJ (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167

    Article  CAS  PubMed  Google Scholar 

  102. Yu S, Levi L, Siegel R, Noy N (2012) Retinoic acid induces neurogenesis by activating both retinoic acid receptors (rars) and peroxisome proliferator-activated receptor beta/delta (pparbeta/delta). J Biol Chem 287:42195–42205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kang MR, Lee SW, Um E, Kang HT, Hwang ES, Kim EJ, Um SJ (2010) Reciprocal roles of sirt1 and skip in the regulation of rar activity: Implication in the retinoic acid-induced neuronal differentiation of p19 cells. Nucleic Acids Res 38:822–831

    Article  CAS  PubMed  Google Scholar 

  104. Goyal RK, Lin P, Kanungo J, Payne AS, Muslin AJ, Longmore GD (1999) Ajuba, a novel lim protein, interacts with grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of xenopus oocytes in a grb2- and ras-dependent manner. Mol Cell Biol 19:4379–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oishi K, Watatani K, Itoh Y, Okano H, Guillemot F, Nakajima K, Gotoh Y (2009) Selective induction of neocortical gabaergic neurons by the pdk1-akt pathway through activation of mash1. Proc Natl Acad Sci U S A 106:13064–13069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fishwick KJ, Li RA, Halley P, Deng P, Storey KG (2010) Initiation of neuronal differentiation requires pi3-kinase/tor signalling in the vertebrate neural tube. Dev Biol 338:215–225

    Article  CAS  PubMed  Google Scholar 

  107. Yu S, Levi L, Casadesus G, Kunos G, Noy N (2014) Fatty acid-binding protein 5 (fabp5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor beta/delta (pparbeta/delta) in the brain. J Biol Chem 289:12748–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dos Santos GA, Kats L, Pandolfi PP (2013) Synergy against pml-rara: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med 210:2793–2802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Strickland S, Mahdavi V (1978) The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15:393–403

    Article  CAS  PubMed  Google Scholar 

  110. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H (2001) Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand trail. Nat Med 7:680–686

    Article  CAS  PubMed  Google Scholar 

  111. Battle TE, Roberson MS, Zhang T, Varvayanis S, Yen A (2001) Retinoic acid-induced blr1 expression requires raralpha, rxr, and mapk activation and uses erk2 but not jnk/sapk to accelerate cell differentiation. Eur J Cell Biol 80:59–67

    Article  CAS  PubMed  Google Scholar 

  112. Breitman TR, Collins SJ, Keene BR (1981) Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 57:1000–1004

    CAS  PubMed  Google Scholar 

  113. Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in bnx mice. Proc Natl Acad Sci U S A 95:8806–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mangiarotti R, Danova M, Alberici R, Pellicciari C (1998) All-trans retinoic acid (atra)-induced apoptosis is preceded by g1 arrest in human mcf-7 breast cancer cells. Br J Cancer 77:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Toma S, Isnardi L, Riccardi L, Bollag W (1998) Induction of apoptosis in mcf-7 breast carcinoma cell line by rar and rxr selective retinoids. Anticancer Res 18:935–942

    CAS  PubMed  Google Scholar 

  116. Donato LJ, Noy N (2005) Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein ii signaling. Cancer Res 65:8193–8199

    Article  CAS  PubMed  Google Scholar 

  117. Donato LJ, Suh JH, Noy N (2007) Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene btg2 is a direct target for retinoic acid receptor signaling. Cancer Res 67:609–615

    Article  CAS  PubMed  Google Scholar 

  118. Niizuma H, Nakamura Y, Ozaki T, Nakanishi H, Ohira M, Isogai E, Kageyama H, Imaizumi M, Nakagawara A (2006) Bcl-2 is a key regulator for the retinoic acid-induced apoptotic cell death in neuroblastoma. Oncogene 25:5046–5055

    Article  CAS  PubMed  Google Scholar 

  119. Mrass P, Rendl M, Mildner M, Gruber F, Lengauer B, Ballaun C, Eckhart L, Tschachler E (2004) Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res 64:6542–6548

    Article  CAS  PubMed  Google Scholar 

  120. Henion PD, Weston JA (1994) Retinoic acid selectively promotes the survival and proliferation of neurogenic precursors in cultured neural crest cell populations. Dev Biol 161:243–250

    Article  PubMed  Google Scholar 

  121. Rodriguez-Tebar A, Rohrer H (1991) Retinoic acid induces ngf-dependent survival response and high-affinity ngf receptors in immature chick sympathetic neurons. Development 112:813–820

    CAS  PubMed  Google Scholar 

  122. Plum LA, Parada LF, Tsoulfas P, Clagett-Dame M (2001) Retinoic acid combined with neurotrophin-3 enhances the survival and neurite outgrowth of embryonic sympathetic neurons. Exp Biol Med (Maywood) 226:766–775

    CAS  Google Scholar 

  123. Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci U S A 103:3902–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hornberg M, Gussing F, Berghard A, Bohm S (2009) Retinoic acid selectively inhibits death of basal vomeronasal neurons during late stage of neural circuit formation. J Neurochem 110:1263–1275

    Article  PubMed  CAS  Google Scholar 

  125. Sorg O, Tran C, Carraux P, Grand D, Hugin A, Didierjean L, Saurat JH (2005) Spectral properties of topical retinoids prevent DNA damage and apoptosis after acute uv-b exposure in hairless mice. Photochem Photobiol 81:830–836

    Article  CAS  PubMed  Google Scholar 

  126. Vorotnikova E, Tries M, Braunhut S (2004) Retinoids and timp1 prevent radiation-induced apoptosis of capillary endothelial cells. Radiat Res 161:174–184

    Article  CAS  PubMed  Google Scholar 

  127. Oritani K, Kaisho T, Nakajima K, Hirano T (1992) Retinoic acid inhibits interleukin-6-induced macrophage differentiation and apoptosis in a murine hematopoietic cell line, y6. Blood 80:2298–2305

    CAS  PubMed  Google Scholar 

  128. Iwata M, Mukai M, Nakai Y, Iseki R (1992) Retinoic acids inhibit activation-induced apoptosis in t cell hybridomas and thymocytes. J Immunol 149:3302–3308

    CAS  PubMed  Google Scholar 

  129. Choudhary R, Baker KM, Pan J (2008) All-trans retinoic acid prevents angiotensin ii- and mechanical stretch-induced reactive oxygen species generation and cardiomyocyte apoptosis. J Cell Physiol 215:172–181

    Article  CAS  PubMed  Google Scholar 

  130. Kholodenko R, Kholodenko I, Sorokin V, Tolmazova A, Sazonova O, Buzdin A (2007) Anti-apoptotic effect of retinoic acid on retinal progenitor cells mediated by a protein kinase a-dependent mechanism. Cell Res 17:151–162

    Article  CAS  PubMed  Google Scholar 

  131. Besnard V, Nabeyrat E, Henrion-Caude A, Chadelat K, Perin L, Le Bouc Y, Clement A (2002) Protective role of retinoic acid from antiproliferative action of tnf-alpha on lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 282:L863–L871

    Article  CAS  PubMed  Google Scholar 

  132. Zouboulis CC (2001) Retinoids--which dermatological indications will benefit in the near future? Skin Pharmacol Appl Ski Physiol 14:303–315

    Article  CAS  Google Scholar 

  133. Kang S, Duell EA, Fisher GJ, Datta SC, Wang ZQ, Reddy AP, Tavakkol A, Yi JY, Griffiths CE, Elder JT et al (1995) Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid binding proteins characteristic of retinoic acid but without measurable retinoic acid levels or irritation. J Investig Dermatol 105:549–556

    Article  CAS  PubMed  Google Scholar 

  134. Gupta S, Pramanik D, Mukherjee R, Campbell NR, Elumalai S, Dewilde RF, Hong SM, Goggins M, De Jesus-Acosta A, Laheru D, Maitra A (2011) Molecular determinants of retinoic acid sensitivity in pancreatic cancer. Clin Cancer Res 18:280–289

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chen R, Feng C, Xu Y (2011) Cyclin-dependent kinase-associated protein cks2 is associated with bladder cancer progression. Journal Int Med Res 39:533–540

    Article  CAS  Google Scholar 

  136. Liu RZ, Graham K, Glubrecht DD, Germain DR, Mackey JR, Godbout R (2011) Association of fabp5 expression with poor survival in triple-negative breast cancer: implication for retinoic acid therapy. Am J Pathol 178:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Barbus S, Tews B, Karra D, Hahn M, Radlwimmer B, Delhomme N, Hartmann C, Felsberg J, Krex D, Schackert G, Martinez R, Reifenberger G, Lichter P (2011) Differential retinoic acid signaling in tumors of long- and short-term glioblastoma survivors. J Natl Cancer Inst 103:598–606

    Article  CAS  PubMed  Google Scholar 

  138. Fang LY, Wong TY, Chiang WF, Chen YL (2010) Fatty-acid-binding protein 5 promotes cell proliferation and invasion in oral squamous cell carcinoma. J Oral Pathol Med 39:342–348

    Article  CAS  PubMed  Google Scholar 

  139. Forootan SS, Bao ZZ, Forootan FS, Kamalian L, Zhang Y, Bee A, Foster CS, Ke Y (2010) Atelocollagen-delivered sirna targeting the fabp5 gene as an experimental therapy for prostate cancer in mouse xenografts. Int J Oncol 36:69–76

    CAS  PubMed  Google Scholar 

  140. Han J, Kioi M, Chu WS, Kasperbauer JL, Strome SE, Puri RK (2009) Identification of potential therapeutic targets in human head & neck squamous cell carcinoma. Head Neck Oncol 1:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ogawa R, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Mori Y, Mori R, Tomoda K, Katada T, Harada K, Fujii Y (2008) Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis Esophagus 21:288–297

    Article  CAS  PubMed  Google Scholar 

  142. Vanaja DK, Ballman KV, Morlan BW, Cheville JC, Neumann RM, Lieber MM, Tindall DJ, Young CY (2006) Pdlim4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res 12:1128–1136

    Article  CAS  PubMed  Google Scholar 

  143. Morgan EA, Forootan SS, Adamson J, Foster CS, Fujii H, Igarashi M, Beesley C, Smith PH, Ke Y (2008) Expression of cutaneous fatty acid-binding protein (c-fabp) in prostate cancer: potential prognostic marker and target for tumourigenicity-suppression. Int J Oncol 32:767–775

    CAS  PubMed  Google Scholar 

  144. Adamson J, Morgan EA, Beesley C, Mei Y, Foster CS, Fujii H, Rudland PS, Smith PH, Ke Y (2003) High-level expression of cutaneous fatty acid-binding protein in prostatic carcinomas and its effect on tumorigenicity. Oncogene 22:2739–2749

    Article  CAS  PubMed  Google Scholar 

  145. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132

    Article  CAS  PubMed  Google Scholar 

  146. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115

    Article  CAS  PubMed  Google Scholar 

  147. Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12:181–195

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen X, Tordova M, Gilliland GL, Wang LC, Li Y, Yan HG, Ji XH (1998) Crystal structure of apo-cellular retinoic acid-binding protein type ii (r111m) suggests a mechanism of ligand entry. J Mol Biol 278:641–653

    Article  CAS  PubMed  Google Scholar 

  149. Kleywegt GJ, Bergfors T, Senn H, Le Motte P, Gsell B, Shudo K, Jones TA (1994) Crystal structures of cellular retinoic acid binding proteins i and ii in complex with all-trans-retinoic acid and a synthetic retinoid. Structure 2:1241–1258

    Article  CAS  PubMed  Google Scholar 

  150. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94:193–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory was supported by NIH grants RO1 DK060684, RO1 DK088669, and R01 CA166955

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noa Noy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noy, N. (2016). Non-classical Transcriptional Activity of Retinoic Acid. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling II. Subcellular Biochemistry, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0945-1_7

Download citation

Publish with us

Policies and ethics