Skip to main content

Advertisement

Log in

Transporters of glucose and other carbohydrates in bacteria

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the bloodstream. Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria, in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) superfamily proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence and uptake of sugars may affect pathogenicity and host-microbiota interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler J, Epstein W (1974) Phosphotransferase system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A 71:2895–2899. https://doi.org/10.1073/pnas.71.7.2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Augustin R (2010) The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 62:315–333

    CAS  PubMed  Google Scholar 

  3. Balderas-Hernández VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernández-Chávez G, Báez-Viveros JL, Martínez A, Bolívar F, Gosset G (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 8:19. https://doi.org/10.1186/1475-2859-8-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barabote RD, Saier MH (2005) Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 69:608–634. https://doi.org/10.1128/mmbr.69.4.608-634.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beier S, Bertilsson S (2013) Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00149

  6. Beis K, Rebuffat S (2019) Multifaceted ABC transporters associated to microcin and bacteriocin export. Res Microbiol

  7. Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR (2012) A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 7. https://doi.org/10.1371/journal.pone.0033320

  8. Bieler S, Silva F, Soto C, Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 188:7049–7061. https://doi.org/10.1128/JB.00688-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biéler S, Silva F, Belin D (2010) The polypeptide core of Microcin E492 stably associates with the mannose permease and interferes with mannose metabolism. Res Microbiol 161:706–710. https://doi.org/10.1016/j.resmic.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  10. Böhm A, Diez J, Diederichs K, Welte W, Boos W (2002) Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: Implications for mal gene regulation, inducer exclusion, and subunit assembly. J Biol Chem 277:3708–3717. https://doi.org/10.1074/jbc.M107905200

    Article  CAS  PubMed  Google Scholar 

  11. Böhm S, Licht A, Wuttge S, Schneider E, Bordignon E (2013) Conformational plasticity of the type i maltose ABC importer. Proc Natl Acad Sci U S A 110:5492–5497. https://doi.org/10.1073/pnas.1217745110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229

    Article  CAS  Google Scholar 

  13. Bordignon E, Grote M, Schneider E (2010) The maltose ATP-binding cassette transporter in the 21st century - Towards a structural dynamic perspective on its mode of action: MicroReview. Mol Microbiol 77:1354–1366. https://doi.org/10.1111/j.1365-2958.2010.07319.x

    Article  CAS  PubMed  Google Scholar 

  14. Bosshart PD, Fotiadis D (2019) Secondary Active Transporters

  15. Buhr A, Daniels GA, Erni B (1992) The glucose transporter of Escherichia coli. Mutants with impaired translocation activity that retain phosphorylation activity. J Biol Chem 267:3847–3851

    CAS  PubMed  Google Scholar 

  16. Buhr A, Flukiger K, Erni B (1994) The glucose transporter of Escherichia coli. Overexpression, purification, and characterization of functional domains. J Biol Chem 269:23437–23443

    CAS  PubMed  Google Scholar 

  17. Buyuktimkin B, Zafar H, Saier MH (2019) Comparative genomics of the transportome of Ten Treponema species. Microb Pathog 132:87–99. https://doi.org/10.1016/j.micpath.2019.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao Y, Jin X, Levin EJ, Huang H, Zong Y, Quick M, Weng J, Pan Y, Love J, Punta M, Rost B, Hendrickson WA, Javitch JA, Rajashankar KR, Zhou M (2011) Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473:50–54. https://doi.org/10.1038/nature09939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chassard C, Lacroix C (2013) Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care 16:453–460. https://doi.org/10.1097/MCO.0b013e3283619e63

    Article  CAS  PubMed  Google Scholar 

  20. Chen J (2013) Molecular mechanism of the Escherichia coli maltose transporter. Curr Opin Struct Biol 23:492–498. https://doi.org/10.1016/j.sbi.2013.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen S, Oldham ML, Davidson AL, Chen J (2013) Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499:364–368. https://doi.org/10.1038/nature12232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choe M, Park YH, Lee CR, Kim YR, Seok YJ (2017) The general PTS component HPr determines the preference for glucose over mannitol. Sci Rep 7:43431. https://doi.org/10.1038/srep43431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chopra I (1988) Molecular mechanisms involved in the transport of antibiotics into bacteria. Parasitology 96:S25–S44. https://doi.org/10.1017/S0031182000085966

    Article  PubMed  Google Scholar 

  24. Clifton MC, Simon MJ, Erramilli SK, Zhang H, Zaitseva J, Hermodson MA, Stauffacher CV (2015) In vitro reassembly of the ribose ATP-binding cassette transporter reveals a distinct set of transport complexes. J Biol Chem 290:5555–5565. https://doi.org/10.1074/jbc.M114.621573

    Article  CAS  PubMed  Google Scholar 

  25. Clore GM, Venditti V (2013) Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem Sci 38:515–530. https://doi.org/10.1016/j.tibs.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  26. Collins J, Robinson C, Danhof H, Knetsch CW, Van Leeuwen HC, Lawley TD, Auchtung JM, Britton RA (2018) Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553:291–294. https://doi.org/10.1038/nature25178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cordaro JC, Melton T, Stratis JP, Atagün M, Gladding C, Hartman PE, Roseman S (1976) Fosfomycin resistance: selection method for internal and extended deletions of the phosphoenolpyruvate:sugar phosphotransferase genes of Salmonella typhimurium. J Bacteriol 128:785–793

    Article  CAS  Google Scholar 

  28. Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E.coli phage HK97. Mol Microbiol 96:437–447. https://doi.org/10.1111/mmi.12918

    Article  CAS  PubMed  Google Scholar 

  29. Cummings JH, MacFarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. Clin Nutr 16:3–11. https://doi.org/10.1016/S0261-5614(97)80252-X

    Article  Google Scholar 

  30. Cura AJ, Carruthers A (2012) Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2:863–914. https://doi.org/10.1002/cphy.c110024

    Article  PubMed  PubMed Central  Google Scholar 

  31. Czuba LC, Hillgren KM, Swaan PW (2018) Post-translational modifications of transporters. Pharmacol. Ther. 192:88–99

    Article  CAS  Google Scholar 

  32. Dalet K, Cenatiempo Y, Cossart P, Héchard Y (2001) A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269. https://doi.org/10.1099/00221287-147-12-3263

  33. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. https://doi.org/10.1128/mmbr.00031-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dean DA, Reizer J, Nikaido H, Saier MH (1990) Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion i. J Biol Chem 265:21005–21010

    CAS  PubMed  Google Scholar 

  35. Deng D, Yan N (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci 25:546–558. https://doi.org/10.1002/pro.2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deutscher J, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P (2014) The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78:231–256. https://doi.org/10.1128/MMBR.00001-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci 104:2384–2389. https://doi.org/10.1073/pnas.0608775104

    Article  CAS  PubMed  Google Scholar 

  38. Do J, Zafar H, Saier MH (2017) Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains. Microb Pathog 107:106–115. https://doi.org/10.1016/j.micpath.2017.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elliott J, Arber W (1978) E. coli K-12 pel mutants, which block phage λ DNA injection, coincide with ptsM, which determines a component of a sugar transport system. MGG Mol Gen Genet 161:1–8. https://doi.org/10.1007/BF00266608

    Article  CAS  PubMed  Google Scholar 

  40. Erni B (2001) Glucose transport by the bacterial phosphotransferase system (PTS): an interface between energy- and signal transduction. In: Microbial transport systems. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, Weinheim, pp 115–138

    Chapter  Google Scholar 

  41. Erni B (2013) The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): An interface between energy and signal transduction. J Iran Chem Soc 10:593–630. https://doi.org/10.1007/s13738-012-0185-1

    Article  CAS  Google Scholar 

  42. Erni B, Zanolari B (1985) The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme II(man)/III(man) complex of Escherichia coli. J Biol Chem 260:15495–15503

    CAS  PubMed  Google Scholar 

  43. Erni B, Zanolari B, Kocher HP (1987) The mannose permease of Escherichia coli consists of three different proteins. J Biol Chem 262:5238–5247

    CAS  PubMed  Google Scholar 

  44. Erni B, Zanolari B, Graff P, Kocher HP (1989) Mannose permease of Escherichia coli. Domain structure and function of the phosphorylating subunit. J Biol Chem 264:18733–18741

    CAS  PubMed  Google Scholar 

  45. Erni B, Siebold C, Christen S, Srinivas A, Oberholzer A, Baumann U (2006) Small substrate, big surprise: Fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Sci 63:890–900. https://doi.org/10.1007/s00018-005-5518-0

    Article  CAS  PubMed  Google Scholar 

  46. Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370

    CAS  PubMed  Google Scholar 

  47. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152. https://doi.org/10.1128/IAI.01386-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science (80- ) 321:810–814. https://doi.org/10.1126/science.1160406

    Article  CAS  Google Scholar 

  49. Felder CB, Graul RC, Lee AY, Merkle HP, Sadee W (1999) The venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS J 1

  50. Fieulaine S, Morera S, Poncet S, Mijakovic I, Galinier A, Janin J, Deutscher J, Nessler S (2002) X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr. Proc Natl Acad Sci U S A 99:13437–13441. https://doi.org/10.1073/pnas.192368699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fiorentino F, Bolla JR, Mehmood S, Robinson CV (2019) The different effects of substrates and nucleotides on the complex formation of ABC transporters. Structure 27:651–659.e3. https://doi.org/10.1016/j.str.2019.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10:336–347. https://doi.org/10.1016/j.chom.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fragoso-Jiménez JC, Baert J, Nguyen TM, Liu W, Sassi H, Goormaghtigh F, Van Melderen L, Gaytán P, Hernández-Chávez G, Martinez A, Delvigne F, Gosset G (2019) Growth-dependent recombinant product formation kinetics can be reproduced through engineering of glucose transport and is prone to phenotypic heterogeneity. Microb Cell Fact:18. https://doi.org/10.1186/s12934-019-1073-5

  54. Fuentes LG, Lara AR, Martínez LM, Ramírez OT, Martínez A, Bolívar F, Gosset G (2013) Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microb Cell Fact 12:42. https://doi.org/10.1186/1475-2859-12-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fukami-Kobayashi K, Tateno Y, Nishikawa K (2003) Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins. Mol Biol Evol 20:267–277. https://doi.org/10.1093/molbev/msg038

    Article  CAS  PubMed  Google Scholar 

  56. Gabrielsen C, Brede DA, Hernández PE, Nes IF, Diep DB (2012) The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 56:2908–2915. https://doi.org/10.1128/AAC.00314-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Galinier A, Deutscher J (2017) Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 429:773–789. https://doi.org/10.1016/j.jmb.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  58. Garcia De Gonzalo CV, Denham EL, Mars RAT, Stülke J, Van Der Donk WA, Van Dijl JM (2015) The phosphoenolpyruvate: sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin. Antimicrob Agents Chemother 59:6844–6854. https://doi.org/10.1128/AAC.01519-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. García-Alles LF, Navdaeva V, Haenni S, Erni B (2002) The glucose-specific carrier of the Escherichia coli phosphotransferase system: synthesis of selective inhibitors and inactivation studies. Eur J Biochem 269:4969–4980. https://doi.org/10.1046/j.1432-1033.2002.03197.x

    Article  CAS  PubMed  Google Scholar 

  60. García-Alles LF, Zahn A, Erni B (2002) Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies. Biochemistry 41:10077–10086. https://doi.org/10.1021/bi025928d

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Doval C, van Raaij MJ (2013) Bacteriophage receptor recognition and nucleic acid transfer. Subcell. Biochem. 68:489–518

    Article  CAS  Google Scholar 

  62. Gatlik-Landwojtowicz E, Äänismaa P, Seelig A (2006) Quantification and characterization of P-glycoprotein-substrate interactions. Biochemistry 45:3020–3032. https://doi.org/10.1021/bi051380+

    Article  CAS  PubMed  Google Scholar 

  63. Gera K, Le T, Jamin R, Eichenbaum Z, McIver KS (2014) The phosphoenolpyruvate phosphotransferase system in group A Streptococcus acts to reduce streptolysin s activity and lesion severity during soft tissue infection. Infect Immun 82:1192–1204. https://doi.org/10.1128/IAI.01271-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. González-Gil G, Kahmann R, Muskhelishvili G (1998) Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J 17:2877–2885. https://doi.org/10.1093/emboj/17.10.2877

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4:14. https://doi.org/10.1186/1475-2859-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599. https://doi.org/10.1073/pnas.1116053109

    Article  PubMed  Google Scholar 

  67. Gutknecht R, Flükiger K, Lanz R, Erni B (1999) Mechanism of phosphoryl transfer in the dimeric IIAB(Man) subunit of the Escherichia coli mannose transporter. J Biol Chem 274:6091–6096. https://doi.org/10.1074/jbc.274.10.6091

    Article  CAS  PubMed  Google Scholar 

  68. Hanamura A, Aiba H (1992) A new aspect of transcriptional control of the Escherichia coli crp gene: positive autoregulation. Mol Microbiol 6:2489–2497. https://doi.org/10.1111/j.1365-2958.1992.tb01425.x

    Article  CAS  PubMed  Google Scholar 

  69. Harwani D (2014) Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm. Braz J Microbiol 45:1139–1144. https://doi.org/10.1590/S1517-83822014000400003

    Article  CAS  PubMed  Google Scholar 

  70. He T, Venema K, Priebe MG, Welling GW, Brummer RJM, Vonk RJ (2008) The role of colonic metabolism in lactose intolerance. Eur J Clin Invest 38:541–547. https://doi.org/10.1111/j.1365-2362.2008.01966.x

    Article  CAS  PubMed  Google Scholar 

  71. He F, Nair GR, Soto CS, Chang Y, Hsu L, Ronzone E, DeGrado WF, Binns AN (2009) Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 191:5802–5813. https://doi.org/10.1128/JB.00451-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Higa F, Edelstein PH (2001) Potential virulence role of the Legionella pneumophila ptsP ortholog. Infect Immun 69:4782–4789. https://doi.org/10.1128/IAI.69.8.4782-4789.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hondorp ER, Hou SC, Hause LL, Gera K, Lee CE, Mciver KS (2013) PTS phosphorylation of Mga modulates regulon expression and virulence in the group A streptococcus. Mol Microbiol 88:1176–1193. https://doi.org/10.1111/mmi.12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS, Thomas GH Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem 10:31156–31163

  75. Hosokawa M, Dolci W, Thorens B (2001) Differential sensitivity of GLUT1- and GLUT2-expressing β cells to streptozotocin. Biochem Biophys Res Commun 289:1114–1117. https://doi.org/10.1006/bbrc.2001.6145

    Article  CAS  PubMed  Google Scholar 

  76. Houot L, Chang S, Pickering BS, Absalon C, Watnick PI (2010) The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192:3055–3067. https://doi.org/10.1128/JB.00213-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ishihama A (2010) Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 34:628–645. https://doi.org/10.1111/j.1574-6976.2010.00227.x

    Article  CAS  PubMed  Google Scholar 

  78. Jacobson GR, Poy F, Lengeler JW (1990) Inhibition of Streptococcus mutans by the antibiotic streptozotocin: Mechanisms of uptake and the selection of carbohydrate-negative mutants. Infect Immun 58:543–549

    Article  CAS  Google Scholar 

  79. Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F (2008) Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32:891–907. https://doi.org/10.1111/j.1574-6976.2008.00125.x

    Article  CAS  PubMed  Google Scholar 

  80. Jardetzky O (1966) Simple allosteric model for membrane pumps [27]. Nature 211:969–970. https://doi.org/10.1038/211969a0

    Article  CAS  PubMed  Google Scholar 

  81. Jeckelmann J-M (2009) The bacterial phosphotransferase system (PTS): studies on protein structures. PhD-thesis; University of Bern

  82. Jeckelmann J-M, Erni B (2019) Carbohydrate transport by group translocation: the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Subcell Biochem:223–274

  83. Jia B, Hao L, Xuan YH, Jeon CO (2018) New insight into the diversity of SemiSWEET sugar transporters and the homologs in prokaryotes. Front Genet 9. https://doi.org/10.3389/fgene.2018.00180

  84. Joly N, Böhm A, Boos W, Richet E (2004) MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding. J Biol Chem 279:33123–33130. https://doi.org/10.1074/jbc.M403615200

    Article  CAS  PubMed  Google Scholar 

  85. Kasho VN, Smirnova IN, Kaback HR (2006) Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. J Mol Biol 358:1060–1070. https://doi.org/10.1016/j.jmb.2006.02.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ke M, Yuan Y, Jiang X, Yan N, Gong H (2017) Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE. PLoS Comput Biol 13

  87. Kemner JM, Liang X, Nester EW (1997) The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J Bacteriol 179:2452–2458. https://doi.org/10.1128/jb.179.7.2452-2458.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta - Gen Subj 1473:108–122. https://doi.org/10.1016/S0304-4165(99)00172-5

    Article  CAS  Google Scholar 

  89. Khajanchi BK, Odeh E, Gao L, Jacobs MB, Philipp MT, Lin T, Norris SJ (2016) Phosphoenolpyruvate phosphotransferase system components modulate gene transcription and virulence of Borrelia burgdorferi. Infect Immun 84:754–764. https://doi.org/10.1128/IAI.00917-15

    Article  CAS  PubMed Central  Google Scholar 

  90. Kjos M, Salehian Z, Nes IF, Diep DB (2010) An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192:5906–5913. https://doi.org/10.1128/JB.00777-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kok M, Bron G, Erni B, Mukhija S (2003) Effect of enzyme I of the bacterial phosphoenolpyruvate : Sugar phosphotransferase system (PTS) on virulence in a murine model. Microbiology 149:2645–2652. https://doi.org/10.1099/mic.0.26406-0

    Article  CAS  PubMed  Google Scholar 

  92. Kumar A, Bhandari A, Krishnaswamy S (2014) Sequence and Structural Perspectives of Bacterial β-Stranded Porins. Protein Pept Lett 22:8–22. https://doi.org/10.2174/0929866521666140827110755

    Article  CAS  Google Scholar 

  93. Kundig W, Ghosh S, Roseman S (1964) Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system*. Pnas 52:1067–1074. https://doi.org/10.1073/pnas.52.4.1067

    Article  CAS  PubMed  Google Scholar 

  94. Kurabayashi K, Tanimoto K, Fueki S, Tomita H, Hirakawa H (2015) Elevated expression of GlpT and UhpT via FNR activation contributes to increased fosfomycin susceptibility in Escherichia coli under anaerobic conditions. Antimicrob Agents Chemother 59:6352–6360. https://doi.org/10.1128/AAC.01176-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lanz R, Erni B (1998) The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J Biol Chem 273:12239–12248. https://doi.org/10.1074/jbc.273.20.12239

    Article  CAS  PubMed  Google Scholar 

  96. Le Bouguénec C, Schouler C (2011) Sugar metabolism, an additional virulence factor in enterobacteria. Int J Med Microbiol 301:1–6. https://doi.org/10.1016/j.ijmm.2010.04.021

    Article  CAS  PubMed  Google Scholar 

  97. Lee S-J, Boos W, Bouché JP, Plumbridge J (2000) Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J 19:5353–5361. https://doi.org/10.1093/emboj/19.20.5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lim S, Seo HS, Jeong J, Yoon H (2019) Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol Res 223–225:63–71. https://doi.org/10.1016/j.micres.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  99. Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, Norris SJ (2012) Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity PLoS One 7. doi: https://doi.org/10.1371/journal.pone.0047532

  100. Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927. https://doi.org/10.1074/jbc.M414050200

    Article  CAS  PubMed  Google Scholar 

  101. Liu X, Zeng J, Huang K, Wang J (2019) Structure of the mannose transporter of the bacterial phosphotransferase system. Cell Res 29:680–682. https://doi.org/10.1038/s41422-019-0194-z

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lloyd CR, Park S, Fei J, Vanderpool CK (2017) The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199:1–14. https://doi.org/10.1128/JB.00869-16

    Article  Google Scholar 

  103. Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493. https://doi.org/10.1038/nsmb.3216

    Article  CAS  PubMed  Google Scholar 

  104. Lopes JG, Sourjik V (2018) Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J 12:2736–2747. https://doi.org/10.1038/s41396-018-0227-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. López-Mondéjar R, Algora C, Baldrian P (2019) Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 37. https://doi.org/10.1016/j.biotechadv.2019.03.013

  106. Luo Y, Zhang T, Wu H (2014) The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 32:905–919. https://doi.org/10.1016/j.biotechadv.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  107. Luo P, Yu X, Wang W, Fan S, Li X, Wang J (2015) Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol 22:238–241. https://doi.org/10.1038/nsmb.2975

    Article  CAS  PubMed  Google Scholar 

  108. Luo P, Dai S, Zeng J, Duan J, Shi H, Wang J (2018) Inward-facing conformation of l-ascorbate transporter suggests an elevator mechanism. Cell Discov 4:35. https://doi.org/10.1038/s41421-018-0037-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci U S A 92:11583–11587. https://doi.org/10.1073/pnas.92.25.11583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lux R, Munasinghe VRN, Castellano F, Lengeler JW, Corrie JET, Khan S (1999) Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell 10:1133–1146. https://doi.org/10.1091/mbc.10.4.1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C (2019) An integrated transport mechanism of the maltose ABC importer. Res Microbiol. https://doi.org/10.1016/j.resmic.2019.09.004

  112. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864. https://doi.org/10.1073/pnas.0901529106

    Article  PubMed  PubMed Central  Google Scholar 

  113. McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO (2018) Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metab Eng 48:233–242. https://doi.org/10.1016/j.ymben.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  114. McCoy JG, Ren Z, Stanevich V, Lee J, Mitra S, Levin EJ, Poget S, Quick M, Im W, Zhou M (2016) The structure of a sugar transporter of the glucose EIIC superfamily provides insight into the elevator mechanism of membrane transport. Structure 24:956–964. https://doi.org/10.1016/j.str.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236. https://doi.org/10.1073/pnas.1218525110

    Article  PubMed  PubMed Central  Google Scholar 

  116. Merino G, Shuman HA (1997) Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system. J Bacteriol 179:7687–7694. https://doi.org/10.1128/jb.179.24.7687-7694.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Milani C, Andrea Lugli G, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A, Viappiani A, Scholz M, Arioli S, Sanchez B, Lane J, Ward DV, Hickey R, Mora D, Segata N, Margolles A, Van Sinderen D, Ventura M (2015) Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 5. https://doi.org/10.1038/srep15782

  118. Miller KA, Phillips RS, Kilgore PB, Smith GL, Hoover TR (2015) A mannose family phosphotransferase system permease and associated enzymes are required for utilization of fructoselysine and glucoselysine in Salmonella enterica serovar typhimurium. J Bacteriol 197:2831–2839. https://doi.org/10.1128/JB.00339-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mitchell P, MOYLE J (1958) Group-translocation: a consequence of enzyme-catalysed group-transfer. Nature 182_ _:372–373

  120. Möller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653. https://doi.org/10.1093/bioinformatics/17.7.646

    Article  PubMed  Google Scholar 

  121. Mukhija S, Hoffner J, Erni B, Islam K (2002) Enzyme I of the Phosphoenolpyruvate:Sugar Phosphotransferase System (PTS) as a Target For New Antibacterials. 42nd Intersci. Conf. Antimicrob. AGENTS Chemother. San Diego

  122. Nasser W, Schneider R, Travers A, Muskhelishvili G (2001) CRP Modulates fis Transcription by Alternate Formation of Activating and Repressing Nucleoprotein Complexes. J Biol Chem 276:17878–17886. https://doi.org/10.1074/jbc.M100632200

    Article  CAS  PubMed  Google Scholar 

  123. Neidhardt F, Umbarger H (1996) Chemical Composition of Escherichia coli. In: Neidhardt FCRC, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 13–16

    Google Scholar 

  124. Nishio Y, Usuda Y, Matsui K, Kurata H (2008) Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol 4:160. https://doi.org/10.1038/msb4100201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Niwano M, Taylor BL (1982) Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci U S A 79:11–15. https://doi.org/10.1073/pnas.79.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Noinaj N, Buchanan SK (2014) Structural insights into the transport of small molecules across membranes. Curr Opin Struct Biol 27:8–15. https://doi.org/10.1016/j.sbi.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  127. Nunn RS, Marković-Housley Z, Génovésio-Taverne JC, Flükiger K, Rizkallah PJ, Jansonius JN, Schirmer T, Erni B (1996) Structure of the IIA domain of the mannose transporter from Escherichia coli at 1.7 Å resolution. J Mol Biol 259:502–511. https://doi.org/10.1006/jmbi.1996.0335

    Article  CAS  PubMed  Google Scholar 

  128. Nuoffer C, Zanolari B, Erni B (1988) Glucose permease of Escherichia coli. The effect of cysteine to serine mutations on the function, stability, and regulation of transport and phosphorylation. J Biol Chem 263:6647–6655

    CAS  PubMed  Google Scholar 

  129. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–521. https://doi.org/10.1038/nature06264

    Article  CAS  PubMed  Google Scholar 

  130. Oldham ML, Chen S, Chen J (2013) Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci U S A 110:18132–18137. https://doi.org/10.1073/pnas.1311407110

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, dos Santos VAPM, Smidt H, Belzer C, de Vos WM (2017) Genomescale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol 83

  132. Pacheco AR, Sperandio V (2015) Enteric pathogens exploit the microbiota-generated nutritional environment of the gut. Microbiol Spectr:3. https://doi.org/10.1128/microbiolspec.mbp-0001-2014

  133. Palace SG, Proulx MK, Lu S, Baker RE, Goguen JD (2014) Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue. MBio 5

  134. Palva ET, Saris P, Silhavy TJ (1985) Gene fusions to the ptsM/pel locus of Escherichia coli. MGG Mol Gen Genet 199:427–433. https://doi.org/10.1007/BF00330754

    Article  CAS  PubMed  Google Scholar 

  135. Park Y-H, Lee BR, Seok Y-J, Peterkofsky A (2006) In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem 281:6448–6454. https://doi.org/10.1074/jbc.M512672200

    Article  CAS  PubMed  Google Scholar 

  136. Pas HH, Robillard GT (1988) S-Phosphocysteine and Phosphohistidine Are Intermediates in the Phosphoenolpyruvate-Dependent Mannitol Transport Catalyzed by Escherichia coli EIIMtl. Biochemistry 27:5835–5839. https://doi.org/10.1021/bi00416a002

    Article  CAS  PubMed  Google Scholar 

  137. Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH (2000) Microbial genome analyses: Comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100. https://doi.org/10.1006/jmbi.2000.3961

    Article  CAS  PubMed  Google Scholar 

  138. Paz A, Claxton DP, Kumar JP, Kazmier K, Bisignano P, Sharma S, Nolte SA, Liwag TM, Nayak V, Wright EM, Grabe M, McHaourab HS, Abramson J (2018) Conformational transitions of the sodium-dependent sugar transporter, vSGLT. Proc Natl Acad Sci U S A 115:E2742–E2751. https://doi.org/10.1073/pnas.1718451115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pflüger-Grau K, Görke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–214. https://doi.org/10.1016/j.tim.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  140. Plumbridge J (1998) Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS. Mol Microbiol 27:369–380. https://doi.org/10.1046/j.1365-2958.1998.00685.x

    Article  CAS  PubMed  Google Scholar 

  141. Plumbridge J (1998) Expression of ptsG, the gene for the major glucose PTS transporter in Escherichia coli, is repressed by Mlc and induced by growth on glucose. Mol Microbiol 29:1053–1063. https://doi.org/10.1046/j.1365-2958.1998.00991.x

    Article  CAS  PubMed  Google Scholar 

  142. Plumbridge J (2002) Regulation of gene expression in the PTS in Escherichia coli: The role and interactions of MIc. Curr Opin Microbiol 5:187–193. https://doi.org/10.1016/S1369-5274(02)00296-5

    Article  CAS  PubMed  Google Scholar 

  143. Poncet S, Milohanic E, Mazé A, Nait Abdallah J, Aké F, Larribe M, Deghmane AE, Taha MK, Dozot M, De Bolle X, Letesson JJ, Deutscher J (2009) Correlations between carbon metabolism and virulence in Bacteria. Contrib Microbiol 16:88–102. https://doi.org/10.1159/000219374

    Article  CAS  PubMed  Google Scholar 

  144. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. In: Neidhardt FCRC, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Microbiological reviews. ASM Press, Washington, DC, pp 543–594

    Google Scholar 

  145. Pridgeon JW, Li Y, Yildirim-Aksoy M, Song L, Klesius PH, Srivastava KK, Reddy PG (2013) Fitness cost, gyrB mutation, and absence of phosphotransferase system fructose specific IIABC component in novobiocin-resistant Streptococcus iniae vaccine strain ISNO. Vet Microbiol 165:384–391. https://doi.org/10.1016/j.vetmic.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  146. Ragunathan PT, Vanderpool CK (2019) Cryptic-prophage-encoded small protein DicB protects escherichia coli from phage infection by inhibiting inner membrane receptor proteins. J Bacteriol:201. https://doi.org/10.1128/JB.00475-19

  147. Ramnath M, Beukes M, Tamura K, Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin a-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101. https://doi.org/10.1128/AEM.66.7.3098-3101.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647. https://doi.org/10.1146/annurev.biochem.77.083007.093039

    Article  CAS  PubMed  Google Scholar 

  149. Rédei GP (2008) Major Facilitator Superfamily (MFS). Encycl Genet Genomics, Proteomics Informatics 62:1142–1142. https://doi.org/10.1007/978-1-4020-6754-9_9778

    Article  Google Scholar 

  150. Reizer J, Reizer A, Yamada M, Saier J (1998) The glucitol permease of Escherichia coli: A tripartite permease of the phosphotransferase system. Microbiology 144:1463–1464. https://doi.org/10.1099/00221287-144-6-1463

    Article  CAS  Google Scholar 

  151. Rempel S, Stanek WK, Slotboom DJ (2019) ECF-Type ATP-Binding Cassette Transporters. Annu Rev Biochem 88:551–576. https://doi.org/10.1146/annurev-biochem-013118-111705

    Article  CAS  PubMed  Google Scholar 

  152. Ren Q, Paulsen IT (2005) Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes. PLoS Comput Biol 1:e27. https://doi.org/10.1371/journal.pcbi.0010027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ren Q, Paulsen IT (2007) Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 12:165–179. https://doi.org/10.1159/000099639

    Article  CAS  PubMed  Google Scholar 

  154. Ren Z, Lee J, Moosa MM, Nian Y, Hu L, Xu Z, McCoy JG, Ferreon ACM, Im W, Zhou M (2018) Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc Natl Acad Sci U S A 115:5962–5967. https://doi.org/10.1073/pnas.1800647115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Reynolds AE, Felton J, Wright A (1981) Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293:625–629. https://doi.org/10.1038/293625a0

    Article  CAS  PubMed  Google Scholar 

  156. Rice AJ, Park A, Pinkett HW (2014) Diversity in ABC transporters: Type I, II and III importers. Crit Rev Biochem Mol Biol 49:426–437. https://doi.org/10.3109/10409238.2014.953626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Richet E, Davidson AL, Joly N (2012) The ABC transporter MalFGK2 sequesters the MalT transcription factor at the membrane in the absence of cognate substrate. Mol Microbiol 85:632–647. https://doi.org/10.1111/j.1365-2958.2012.08137.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ríos Colombo NS, Chalón MC, Navarro SA, Bellomio A (2018) Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 64:345–351. https://doi.org/10.1007/s00294-017-0757-9

    Article  CAS  PubMed  Google Scholar 

  159. Robillard GT, Broos J (1999) Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim Biophys Acta - Rev Biomembr 1422:73–104. https://doi.org/10.1016/S0304-4157(99)00002-7

    Article  CAS  Google Scholar 

  160. Roseman S (1989) Sialic acid, serendipity, and sugar transport: discovery of the bacterial phosphotransferase system. FEMS Microbiol Lett 63:3–12. https://doi.org/10.1111/j.1574-6968.1989.tb14095.x

    Article  CAS  Google Scholar 

  161. Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67:183–197. https://doi.org/10.1111/j.1574-6941.2008.00633.x

    Article  CAS  PubMed  Google Scholar 

  162. Saier MH (2000) A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters. Microbiol Mol Biol Rev 64:354–411. https://doi.org/10.1128/MMBR.64.2.354-411.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saier J, Goldman SR, Maile RR, Moreno MS, Weyler W, Yang N, Paulsen IT (2002) Transport capabilities encoded within the Bacillus subtilis genome. J Mol Microbiol Biotechnol 4:37–67

    CAS  PubMed  Google Scholar 

  164. Saier MH, Hvorup RN, Barabote RD (2005) Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans 33:220–224. https://doi.org/10.1042/BST0330220

    Article  CAS  PubMed  Google Scholar 

  165. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res 44:D372–D379. https://doi.org/10.1093/nar/gkv1103

    Article  CAS  PubMed  Google Scholar 

  166. Sakamoto Y, Furukawa S, Ogihara H, Yamasaki M (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67:2030–2033. https://doi.org/10.1271/bbb.67.2030

    Article  CAS  PubMed  Google Scholar 

  167. Salonen A, de Vos WM (2014) Impact of Diet on Human Intestinal Microbiota and Health. Annu Rev Food Sci Technol 5:239–262. https://doi.org/10.1146/annurev-food-030212-182554

    Article  CAS  PubMed  Google Scholar 

  168. Schaechter M, The View From Here Group (2001) Escherichia coli and Salmonella 2000: the View From Here. Microbiol Mol Biol Rev 65:119–130. https://doi.org/10.1128/mmbr.65.1.119-130.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Schauder S, Nunn RS, Lanz R, Erni B, Schirmer T (1998) Crystal structure of the IIB subunit of a fructose permease (IIB(Lev)) from Bacillus subtilis. J Mol Biol 276:591–602. https://doi.org/10.1006/jmbi.1997.1544

    Article  CAS  PubMed  Google Scholar 

  170. Scheepers A, Schmidt S, Manolescu A, Cheeseman CI, Bell A, Zahn C, Joost HG, Schürmann A (2005) Characterization of the human SLC2A11 (GLUT11) gene: Alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol 22:339–351. https://doi.org/10.1080/09687860500166143

    Article  CAS  PubMed  Google Scholar 

  171. Singh SK, Piscitelli CL, Yamashita A, Gouaux E (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science (80- ) 322:1655–1661. https://doi.org/10.1126/science.1166777

    Article  CAS  Google Scholar 

  172. Somavanshi R, Ghosh B, Sourjik V (2016) Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli. PLoS Biol 14. https://doi.org/10.1371/journal.pbio.2000074

  173. Sondej M, Weinglass AB, Peterkofsky A, Kaback HR (2002) Binding of enzyme IIAGlc, a component of the phosphoenolpyruvate:sugar phosphotransferase system, to the Escherichia coli lactose permease. Biochemistry 41:5556–5565

    Article  CAS  Google Scholar 

  174. Steegborn CS, Danot O, Huber R, Clausen T (2001) Crystal structure of transcription factor MalT domain III: A novel helix repeat fold implicated in regulated oligomerization. Structure 9:1051–1060. https://doi.org/10.1016/S0969-2126(01)00665-7

    Article  CAS  PubMed  Google Scholar 

  175. Stolz B, Huber M, Markovic-Housley Z, Erni B (1993) The mannose transporter of Escherichia coli. Structure and function of the IIAB(Man) subunit. J Biol Chem 268:27094–27099

    CAS  PubMed  Google Scholar 

  176. Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201. https://doi.org/10.1016/S1369-5274(99)80034-4

    Article  CAS  PubMed  Google Scholar 

  177. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E (2015) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstet Gynecol Surv 70:31–32. https://doi.org/10.1097/01.ogx.0000460711.58331.94

    Article  Google Scholar 

  178. Sun Y, Vanderpool CK (2013) Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli. J Bacteriol 195:4804–4815

    Article  CAS  Google Scholar 

  179. Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490:361–366. https://doi.org/10.1038/nature11524

    Article  CAS  PubMed  Google Scholar 

  180. Sundar GS, Islam E, Gera K, Le Breton Y, McIver KS (2017) A PTS EII mutant library in Group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis. Mol Microbiol 103:518–533. https://doi.org/10.1111/mmi.13573

    Article  CAS  PubMed  Google Scholar 

  181. Swe PM, Cook GM, Tagg JR, Jack RW (2009) Mode of action of dysgalacticin: a large heat-labile bacteriocin. J Antimicrob Chemother 63:679–686. https://doi.org/10.1093/jac/dkn552

    Article  CAS  PubMed  Google Scholar 

  182. Swier LJYM, Guskov A, Slotboom DJ (2016) Structural insight in the toppling mechanism of an energy-coupling factor transporter. Nat Commun 7. https://doi.org/10.1038/ncomms11072

  183. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, Muratani T, Matsumoto T, Nakahama C, Tomono K (2010) Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 35:333–337. https://doi.org/10.1016/j.ijantimicag.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  184. Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96:2408–2413. https://doi.org/10.1073/pnas.96.5.2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tang F, Saier MH (2014) Transport proteins promoting Escherichia coli pathogenesis. Microb Pathog 71–72:41–55. https://doi.org/10.1016/j.micpath.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  186. Tatsuno I, Okada R, Zhang Y, Isaka M, Hasegawa T (2013) Partial loss of CovS function in Streptococcus pyogenes causes severe invasive disease. BMC Res Notes 6. https://doi.org/10.1186/1756-0500-6-126

  187. Tchieu JH, Norris V, Edwards JS, Saier J (2001) The complete phosphotransferase system in Escherichia coli. J Mol Microbiol Biotechnol 3:329–346

    CAS  PubMed  Google Scholar 

  188. Thattai M, Shraiman BI (2003) Metabolic switching in the sugar phosphotransferase system of Escherichia coli. Biophys J 85:744–754. https://doi.org/10.1016/S0006-3495(03)74517-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Thieffry D, Salgado H, Huerta AM, Collado-Vides J (1998) Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12. Bioinformatics 14:391–400

    Article  CAS  Google Scholar 

  190. Tymoszewska A, Diep DB, Aleksandrzak-Piekarczyk T (2018) The extracellular loop of Man-PTS subunit IID is responsible for the sensitivity of Lactococcus garvieae to garvicins A, B and C. Sci Rep 8. https://doi.org/10.1038/s41598-018-34087-2

  191. Ullmann A (1996) Catabolite repression: A story without end. Res Microbiol 147:455–458. https://doi.org/10.1016/0923-2508(96)83999-4

    Article  CAS  PubMed  Google Scholar 

  192. van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77:628–695. https://doi.org/10.1128/mmbr.00025-13

    Article  PubMed  PubMed Central  Google Scholar 

  193. Vanderpool CK, Gottesman S (2005) Noncoding RNAs at the membrane. Nat Struct Mol Biol 12:285–286. https://doi.org/10.1038/nsmb0405-285

    Article  CAS  PubMed  Google Scholar 

  194. Wang B, Dukarevich M, Sun EI, Yen MR, Saier MH (2009) Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 231:1–10. https://doi.org/10.1007/s00232-009-9200-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang Q, Millet YA, Chao MC, Sasabe J, Davis BM, Waldor MK (2015) A genome-wide screen reveals that the Vibrio cholerae phosphoenolpyruvate phosphotransferase system modulates virulence gene expression. Infect Immun 83:3381–3395. https://doi.org/10.1128/IAI.00411-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Westermayer SA, Fritz G, Gutiérrez J, Megerle JA, Weißl MPS, Schnetz K, Gerland U, Rädler JO (2016) Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli. Mol Microbiol 100:472–485. https://doi.org/10.1111/mmi.13329

    Article  CAS  PubMed  Google Scholar 

  197. Williams N, Fox DK, Shea C, Roseman S (1986) Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. Proc Natl Acad Sci U S A 83:8934–8938. https://doi.org/10.1073/pnas.83.23.8934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985. https://doi.org/10.1111/j.1574-6976.2010.00220.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wisedchaisri G, Park MS, Iadanza MG, Zheng H, Gonen T (2014) Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nat Commun:5. https://doi.org/10.1038/ncomms5521

  200. Wright EM, Martín MG, Turk E (2003) Intestinal absorption in health and disease - Sugars. Bailliere’s Best Pract Res Clin Gastroenterol 17:943–956. https://doi.org/10.1016/S1521-6918(03)00107-0

    Article  CAS  Google Scholar 

  201. Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, Griffin NW, Cheng J, Latreille P, Kerstetter RA, Terrapon N, Henrissat B, Osterman AL, Gordon JI (2015) Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science (80- ) 350. https://doi.org/10.1126/science.aac5992

  202. Wu X, Lv X, Lu J, Yu S, Jin Y, Hu J, Zuo J, Mi R, Huang Y, Qi K, Chen Z, Han X (2017) The role of the ptsI gene on AI-2 internalization and pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 113:321–329. https://doi.org/10.1016/j.micpath.2017.10.048

    Article  CAS  PubMed  Google Scholar 

  203. Wu S, Liu J, Wang W (2018) Dissecting the conformational dynamics-modulated enzyme catalysis with single-molecule FRET. J Phys Chem B 122:6179–6187. https://doi.org/10.1021/acs.jpcb.8b02374

    Article  CAS  PubMed  Google Scholar 

  204. Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, Xu S, Perry K, Frommer WB, Feng L (2014) Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448–452. https://doi.org/10.1038/nature13670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci U S A 110. https://doi.org/10.1073/pnas.1311244110

  206. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl --dependent neurotransmitter transporters. Nature 437:215–223. https://doi.org/10.1038/nature03978

    Article  CAS  PubMed  Google Scholar 

  207. Yeo WS, Arya R, Kim KK, Jeong H, Cho KH, Bae T (2018) The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus. Sci Rep 8. https://doi.org/10.1038/s41598-018-20617-5

  208. Zafar H, Saier MH (2018) Comparative genomics of transport proteins in seven Bacteroides species. PLoS One 13. https://doi.org/10.1371/journal.pone.0208151

  209. Zeth K, Thein M (2010) Porins in prokaryotes and eukaryotes: Common themes and variations. Biochem J 431:13–22. https://doi.org/10.1042/BJ20100371

    Article  CAS  PubMed  Google Scholar 

  210. Zhang Y (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309. https://doi.org/10.1093/nar/gki524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang Y, Gardina PJ, Kuebler AS, Kang HS, Christopher JA, Manson MD (1999) Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism. Proc Natl Acad Sci U S A 96:939–944. https://doi.org/10.1073/pnas.96.3.939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893. https://doi.org/10.1093/nar/gkh908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhi Y, Lin SM, Jang AY, Ahn KB, Ji HJ, Guo HC, Lim S, Seo HS (2019) Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr. J Microbiol 57:64–73. https://doi.org/10.1007/s12275-019-8416-0

    Article  CAS  PubMed  Google Scholar 

  214. Zhu F, Wang Y, San K-Y, Bennett GN (2018) Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnol Bioeng 115:1743–1754. https://doi.org/10.1002/bit.26584

    Article  CAS  PubMed  Google Scholar 

  215. Zoetendal EG, Raes J, Van Den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, De Vos WM, Kleerebezem M (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6:1415–1426. https://doi.org/10.1038/ismej.2011.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zúñiga M, Comas I, Linaje R, Monedero V, Yebra MJ, Esteban CD, Deutscher J, Pérez-Martínez G, González-Candelas F (2005) Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol Biol Evol 22:1673–1685. https://doi.org/10.1093/molbev/msi163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BE would like to thank his former collaborators for their commitment, and the Universities of Basel, Marburg and Bern, the DFG and the SNF for their generous support.

Funding

J.-M. J. was supported by the University of Bern, the National Centre of Competence in Research (NCCR) TransCure and the Swiss National Science Foundation (grants to Prof. Dimitrios Fotiadis, University of Bern, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Jeckelmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Glucose Transporters in Health and Disease in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeckelmann, JM., Erni, B. Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch - Eur J Physiol 472, 1129–1153 (2020). https://doi.org/10.1007/s00424-020-02379-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02379-0

Keywords

Navigation