Skip to main content
Log in

Cholera toxin perturbs the paracellular barrier in the small intestinal epithelium of rats by affecting claudin-2 and tricellulin

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cholera toxin is commonly known to induce chloride secretion of the intestine. In recent years, effects on epithelial barrier function have been reported, indicating synergistic co-regulation of transporters and tight junction proteins. Our current study focused on the analysis of cholera toxin effects on transepithelial resistance and on tight junction proteins, the latter known as structural correlates of barrier function. Ligated segments of the rat jejunum were injected with buffered solution containing cholera toxin (1 μg/ml) and incubated for 4 h. Subsequently, selfsame tissue specimens were mounted in Ussing chambers, and cholera toxin (1 μg/ml) was added on the apical side. Transepithelial resistance and permeability of sodium fluorescein (376 Da) were analyzed. Subsequently, tissues were removed, expression and localization of claudins were analyzed, and morphological studies were performed employing transmission electron microscopy and confocal laser scanning microscopy. Cholera toxin induced a marked decrease in transepithelial resistance in the rat jejunal epithelium and an increase in paracellular permeability for sodium fluorescein. Immunoblotting of tight junction proteins revealed an increase in claudin-2 signals, which was verified by confocal laser scanning immunofluorescence microscopy, and a decrease in tricellulin, whereas other tight junction proteins remained unchanged. Transmission electron microscopy showed a reduction in the number of microvilli after incubation with cholera toxin. Moreover, cholera toxin led to a widening of the intercellular space between enterocytes. In accordance with the commonly known prosecretory effect of cholera toxin, our study revealed a complementary effect on small intestinal barrier function and integrity, which might constitute a pathomechanism with high relevance for prevention and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alzamora R, O’Mahony F, Harvey BJ (2011) Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon. Steroids 76:867–876. https://doi.org/10.1016/j.steroids.2011.04.016

    Article  CAS  PubMed  Google Scholar 

  2. Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115(Pt 24:4969–4976. https://doi.org/10.1242/jcs.00165

    Article  CAS  PubMed  Google Scholar 

  3. Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M (2009) Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun 378(1):45–50. https://doi.org/10.1016/j.bbrc.2008.10.164

    Article  CAS  PubMed  Google Scholar 

  4. Castellani S, Favia M, Guerra L, Carbone A, Abbattiscianni AC, Di Gioia S, Casavola V, Conese M (2017) Emerging relationship between CFTR, actin and tight junction organization in cystic fibrosis airway epithelium. Histol Histopathol 32(5):445–459. https://doi.org/10.14670/HH-11-842

    Article  CAS  PubMed  Google Scholar 

  5. Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC (1992) Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257(5073):1125–1128

    Article  CAS  PubMed  Google Scholar 

  6. De Lisle RC (2014) Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 355(1):131–142. https://doi.org/10.1007/s00441-013-1734-3

    Article  CAS  PubMed  Google Scholar 

  7. DiBona DR, Chen LC, Sharp GW (1974) A study of intercellular spaces in the rabbit jejunum during acute volume expansion and after treatment with cholera toxin. J Clin Invest 53(5):1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan S, Harfoot N, Bartolo RC, Butt AG (2012) CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum Trichosurus vulpecula. J Exp Biol 215(Pt 7:1218–1230. https://doi.org/10.1242/jeb.061176

    Article  CAS  PubMed  Google Scholar 

  9. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266(5182):107–109

    Article  CAS  PubMed  Google Scholar 

  10. Guichard A, Cruz-Moreno B, Aguilar B, van Sorge NM, Kuang J, Kurkciyan AA, Wang Z, Hang S, Pineton de Chambrun GP, McCole DF, Watnick P, Nizet V, Bier E (2013) Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 14(3):294–305. https://doi.org/10.1016/j.chom.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ikenouchi J, Furuse M, Furuse K, Sasaki K, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945. https://doi.org/10.1083/jcb.200510043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724. https://doi.org/10.1091/mbc.e09-01-0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu X, Yang G, Geng XR, Cao Y, Li N, Ma L, Chen S, Yang PC, Liu Z (2013) Microbial products induce claudin-2 to compromise gut epithelial barrier function. PLoS One 8:e68547. https://doi.org/10.1371/journal.pone.0068547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marinaro M, Staats HF, Hiroi T, Jackson RJ, Coste M, Boyaka PN, Okahashi N, Yamamoto M, Kiyono H, Bluethmann H, Fujihashi K, McGhee JR (1995) Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J Immunol 155(10):4621–4629

    CAS  PubMed  Google Scholar 

  15. Markov AG, Veshnyakova A, Fromm M, Amasheh M, Amasheh S (2010) Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B 180(4):591–598. https://doi.org/10.1007/s00360-009-0440-7

    Article  CAS  PubMed  Google Scholar 

  16. Markov AG, Falchuk EL, Kruglova NM, Rybalchenko OV, Fromm M, Amasheh S (2014) Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins. Pflugers Arch 466(11):2059–2065. https://doi.org/10.1007/s00424-014-1460-z

    Article  CAS  PubMed  Google Scholar 

  17. Matchkov VV, Krivoi II (2016) Specialized functional diversity and interactions of the Na,K-ATPase. Front Physiol 7:179. https://doi.org/10.3389/fphys.2016.00179

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mathan MM, Chandy G, Mathan VI (1995) Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology. 109(2):422–430

    Article  CAS  PubMed  Google Scholar 

  19. Molenda N, Urbanova K, Weiser N, Kusche-Vihrog K, Günzel D, Schillers H (2014) Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines–do we have a proper model? PLoS One 9(6):e100621. https://doi.org/10.1371/journal.pone.0100621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nilsson HE, Dragomir A, Lazorova L, Johannesson M, Roomans GM (2010) CFTR and tight junctions in cultured bronchial epithelial cells. Exp Mol Pathol 88(1):118–127. https://doi.org/10.1016/j.yexmp.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  21. Radloff J, Cornelius V, Markov AG, Amasheh S (2019) Caprate modulates intestinal barrier function in porcine Peyer’s patch follicle-associated epithelium. Int J Mol Sci 20(6):E1418. https://doi.org/10.3390/ijms20061418

    Article  PubMed  Google Scholar 

  22. Rajasekaran SA, Beyenbach KW, Rajasekaran AK (2008) Interactions of tight junctions with membrane channels and transporters. Biochim Biophys Acta 1778(3):757–769

    Article  CAS  PubMed  Google Scholar 

  23. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Günzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123(Pt 11:1913–1921. https://doi.org/10.1242/jcs.060665

    Article  CAS  PubMed  Google Scholar 

  24. Rybalchenko OV, Bondarenko VM, Orlova OG, Markov AG, Amasheh S (2015) Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation. Arch Microbiol 197(8):1027–1032. https://doi.org/10.1007/s00203-015-1140-1

    Article  CAS  PubMed  Google Scholar 

  25. Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134(2):523–534. https://doi.org/10.1053/j.gastro.2007.11.040

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka H, Tamura A, Suzuki K, Tsukita S (2017) Site-specific distribution of claudin-based paracellular channels with roles in biological fluid flow and metabolism. Ann N Y Acad Sci 1405(1):44–52. https://doi.org/10.1111/nyas.13438

    Article  CAS  PubMed  Google Scholar 

  27. Wada M, Tamura A, Takahashi N, Tsukita S (2013) Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology 144(2):369–380. https://doi.org/10.1053/j.gastro.2012.10.035

    Article  CAS  PubMed  Google Scholar 

  28. Yu AS (2009) Molecular basis for cation selectivity in claudin-2-based pores. Ann N Y Acad Sci 1165:53–57. https://doi.org/10.1111/j.1749-6632.2009.04023.x

    Article  CAS  PubMed  Google Scholar 

  29. Yu W, Hussey Freeland DM, Nadeau KC (2016) Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 16:751–765. https://doi.org/10.1038/nri.2016.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was sponsored by a grant from the Russian Research Foundation (No. 18-15-00043), a grant from the Saint Petersburg State University (No. 0.37.218.2016), a grant from the Deutsche Forschungsgemeinschaft (AM 141/11-1), and the Partnership Program Freie Universität Berlin-Saint Petersburg State University.

Author information

Authors and Affiliations

Authors

Contributions

Performed research: AGM, ONV, LSO, AAF, NMK, OVR

Analyzed data: AGM, JRA, SA

Contributed new methods or models: AGM, JRA, SA

Wrote the paper: AGM, JRA, SA

Corresponding author

Correspondence to Salah Amasheh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A.G., Vishnevskaya, O.N., Okorokova, L.S. et al. Cholera toxin perturbs the paracellular barrier in the small intestinal epithelium of rats by affecting claudin-2 and tricellulin. Pflugers Arch - Eur J Physiol 471, 1183–1189 (2019). https://doi.org/10.1007/s00424-019-02294-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02294-z

Keywords

Navigation