Skip to main content
Log in

Disrupted tight junctions in the small intestine of cystic fibrosis mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The tight junction (TJ) is the major determinant of paracellular permeability, which in the gut protects the body from entry of harmful substances such as microbial components. In cystic fibrosis (CF), there is increased permeability of the small intestine both in humans and in CF mice. To gain insight into the mechanisms of increased intestinal permeability in CF, I analyze the composition of the TJ in a cystic fibrosis transmembrane conductance regulator (Cftr) knockout mouse model. Significant changes in TJ gene expression in the CF intestine were found for Cldn1, Cldn7, Cldn8 and Pmp22, which were expressed at lower levels and Cldn2 that was expressed at a higher level. Protein levels of claudin-2 were increased in the CF intestine as compared to wild-type, while other TJ proteins were not significantly different. In the villus epithelium of the CF intestine, all TJ components analyzed were mislocalized to the basal cytoplasm and showed varying degrees of loss from the TJ and apico-lateral surfaces. The pore-forming claudin-2 in the CF intestine showed more intense staining but was correctly localized to the TJ, principally in the crypts that are enlarged in CF. The cytokine TNFα, known to affect TJ, was elevated to 160 % of wild-type in the CF intestine. In summary, there is a dramatic redistribution of claudin proteins from the TJ/lateral membrane to the basal cytoplasm of the villus epithelium in the CF intestine. These changes in TJ protein localization in CF are likely to be involved in the increased permeability of the CF small intestine to macromolecules and TNFα may be a causative factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Sadi R, Ye D, Said HM, Ma TY (2011) Cellular and molecular mechanism of interleukin-1beta modulation of Caco-2 intestinal epithelial tight junction barrier. J Cell Mol Med 15:970–982

    Article  CAS  PubMed  Google Scholar 

  • Amasheh S, Meiri N, Gitter AH, Schoeneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  CAS  PubMed  Google Scholar 

  • Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M (2009) Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun 378:45–50

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  Google Scholar 

  • Barthel LK, Raymond PA (1990) Improved method for obtaining 3-μm cryosections for immunocytochemistry. J Histochem Cytochem 38:1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Beaurepaire C, Smyth D, McKay DM (2009) Interferon-gamma regulation of intestinal epithelial permeability. J Interferon Cytokine Res 29:133–144

    Article  CAS  PubMed  Google Scholar 

  • Berglund JJ, Riegler M, Zolotarevsky Y, Wenzl E, Turner JR (2001) Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am J Physiol Gastrointest Liver Physiol 281:G1487–G1493

    CAS  PubMed  Google Scholar 

  • Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171:6164–6172

    CAS  PubMed  Google Scholar 

  • Camilleri M, Madsen K, Spiller R, Greenwood-Van MB, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 24:503–512

    Article  CAS  PubMed  Google Scholar 

  • Casserly B, Donat W (2009) Stabilization of lung function and clinical symptoms in a patient with cystic fibrosis (CF) after institution of infliximab: a monoclonal antibody that binds tumor necrosis factor alpha. Lung 187:149–152

    Article  CAS  PubMed  Google Scholar 

  • Castellani S, Guerra L, Favia M, Di GS, Casavola V, Conese M (2012) NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Lab Invest 92:1527–1540

    Article  CAS  PubMed  Google Scholar 

  • Cesarone CF, Bolognesi C, Santi L (1979) Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem 100:188–197

    Article  CAS  PubMed  Google Scholar 

  • De Lisle RC, Borowitz D (2013) The cystic fibrosis intestine. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a009753

    PubMed  Google Scholar 

  • De Lisle RC, Mueller R, Boyd M (2011) Impaired mucosal barrier function in the small intestine of the cystic fibrosis mouse. J Pediatr Gastroenterol Nutr 53:371–379

    Article  PubMed Central  PubMed  Google Scholar 

  • De Lisle RC, Roach E, Jansson K (2007) Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 293:G577–G584

    Article  PubMed  Google Scholar 

  • De Lisle RC, Roach EA, Norkina O (2006) Eradication of small intestinal bacterial overgrowth in the cystic fibrosis mouse reduces mucus accumulation. J Pediatr Gastroenterol Nutr 42:46–52

    Article  PubMed  Google Scholar 

  • Denizot J, Sivignon A, Barreau F, Darcha C, Chan HF, Stanners CP, Hofman P, Rfeuille-Michaud A, Barnich N (2012) Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn’s disease patients. Inflamm Bowel Dis 18:294–304

    Article  PubMed  Google Scholar 

  • Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, Cao J, Chen YH (2012) Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 142:305–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drozdowski LA, Thomson AB (2006) Intestinal sugar transport. World J Gastroenterol 12:1657–1670

    CAS  PubMed  Google Scholar 

  • Durie PR, Kent G, Phillips MJ, Ackerley CA (2004) Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol 164:1481–1493

    Article  PubMed  Google Scholar 

  • Eckman EA, Cotton CU, Kube DM, Davis PB (1995) Dietary changes improve survival of CFTR S489X homozygous mutant mouse. Am J Physiol Lung Cell Mol Physiol 269:L625–L630

    CAS  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Van Itallie CM, Anderson JM (2012) Zonula occludens-1 and −2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 23:577–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N (2006) Differential expression and subcellular localization of claudin-7, -8, -12, -13, and −15 along the mouse intestine. J Histochem Cytochem 54:933–944

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Gawenis LR, Hut H, Bot AGM, Shull GE, De Jonge HR, Stien X, Miller ML, Clarke LL (2004) Electroneutral sodium absorption and electrogenic anion secretion across murine small intestine are regulated in parallel. Am J Physiol Gastrointest Liver Physiol 287:G1140–G1149

    Article  CAS  PubMed  Google Scholar 

  • Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  Google Scholar 

  • Guttman JA, Finlay BB (2009) Tight junctions as targets of infectious agents. Biochim Biophys Acta 1788:832–841

    Article  CAS  PubMed  Google Scholar 

  • Hallberg K, Grzegorczyk A, Larson G, Strandvik B (1997) Intestinal permeability in cystic fibrosis in relation to genotype. J Pediatr Gastroenterol Nutr 25:290–295

    Article  CAS  PubMed  Google Scholar 

  • Hering NA, Schulzke JD (2009) Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis 27:450–454

    Article  PubMed  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John LJ, Fromm M, Schulzke JD (2011) Epithelial barriers in intestinal inflammation. Antioxid Redox Signal 15:1255–1270

    Article  CAS  PubMed  Google Scholar 

  • Krug SM, Amasheh M, Dittmann I, Christoffel I, Fromm M, Amasheh S (2013) Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 34:275–282

    Article  CAS  PubMed  Google Scholar 

  • Krug SM, Amasheh S, Richter JF, Milatz S, Gunzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lameris AL, Huybers S, Kaukinen K, Makela TH, Bindels RJ, Hoenderop JG, Nevalainen PI (2013) Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand J Gastroenterol 48:58–69

    Article  CAS  PubMed  Google Scholar 

  • Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204:3067–3076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch SV, Goldfarb KC, Wild Y, Kong W, De Lisle RC, Brodie EL (2013) Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. Gut Microbes 4:41–47

    Article  PubMed  Google Scholar 

  • Markov AG, Veshnyakova A, Fromm M, Amasheh M, Amasheh S (2010) Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B 180:591–598

    Article  CAS  PubMed  Google Scholar 

  • Mashukova A, Wald FA, Salas PJ (2011) Tumor necrosis factor alpha and inflammation disrupt the polarity complex in intestinal epithelial cells by a posttranslational mechanism. Mol Cell Biol 31:756–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzon E, Cuzzocrea S (2008) Role of TNF-alpha in ileum tight junction alteration in mouse model of restraint stress. Am J Physiol Gastrointest Liver Physiol 294:G1268–G1280

    Article  CAS  PubMed  Google Scholar 

  • Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798:2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Norkina O, Burnett TG, De Lisle RC (2004a) Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect Immun 72:6040–6049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norkina O, Kaur S, Ziemer D, De Lisle RC (2004b) Inflammation of the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 286:G1032–G1041

    Article  CAS  PubMed  Google Scholar 

  • Notterpek L, Roux KJ, Amici SA, Yazdanpour A, Rahner C, Fletcher BS (2001) Peripheral myelin protein 22 is a constituent of intercellular junctions in epithelia. Proc Natl Acad Sci USA 98:14404–14409

    Article  CAS  PubMed  Google Scholar 

  • Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW (2012) Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 180:626–635

    Article  CAS  PubMed  Google Scholar 

  • Penders J, Stobberingh EE, van den Brandt PA, Thijs C (2007) The role of the intestinal microbiota in the development of atopic disorders. Allergy 62:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Poritz LS, Harris LR III, Kelly AA, Koltun WA (2011) Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci 56:2802–2809

    Article  CAS  PubMed  Google Scholar 

  • Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422

    Article  CAS  PubMed  Google Scholar 

  • Rodgers LS, Beam MT, Anderson JM, Fanning AS (2013) Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. J Cell Sci 126:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Roux KJ, Amici SA, Fletcher BS, Notterpek L (2005) Modulation of epithelial morphology, monolayer permeability, and cell migration by growth arrest specific 3/peripheral myelin protein 22. Mol Biol Cell 16:1142–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Stallings VA, Stark LJ, Robinson KA, Feranchak AP, Quinton H (2008) Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J Am Diet Assoc 108:832–839

    Article  PubMed  Google Scholar 

  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Yang H, Nose K, Nose S, Haxhija EQ, Koga H, Feng Y, Teitelbaum DH (2008) Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am J Physiol Gastrointest Liver Physiol 294:G139–G147

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286:31263–31271

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kondoh M, Masuyama A, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y (2005) Role of C-terminal regions of the C-terminal fragment of Clostridium perfringens enterotoxin in its interaction with claudin-4. J Control Release 108:56–62

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134:523–534

    Article  CAS  PubMed  Google Scholar 

  • Timmerman V, Nelis E, Van HW, Nieuwenhuijsen BW, Chen KL, Wang S, Ben OK, Cullen B, Leach RJ, Hanemann CO (1992) The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nat Genet 1:171–175

    Article  CAS  PubMed  Google Scholar 

  • van Elburg RM, Uil JJ, Van Aalderen WM, Mulder CJ, Heymans HS (1996) Intestinal permeability in exocrine pancreatic insufficiency due to cystic fibrosis or chronic pancreatitis. Pediatr Res 39:985–991

    Article  PubMed  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Vinay DS, Kwon BS (2012) Targeting TNF superfamily members for therapeutic intervention in rheumatoid arthritis. Cytokine 57:305–312

    Article  CAS  PubMed  Google Scholar 

  • Vincenzi F, Bizzarri B, Ghiselli A, de’ Angelis N, Fornaroli F, de’ Angelis GL (2010) Cystic fibrosis and Crohn’s disease: successful treatment and long term remission with infliximab. World J Gastroenterol 16:1924–1927

    Article  CAS  PubMed  Google Scholar 

  • Visser S, Martin M, Serisier DJ (2012) Improvements in cystic fibrosis lung disease and airway inflammation associated with etanercept therapy for rheumatoid arthritis: a case report. Lung 190:579–581

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Tamura A, Takahashi N, Tsukita S (2012) Loss of claudins 2 and 15 from mice causes defects in paracellular Na(+) flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology 144:369–380

    Article  PubMed  Google Scholar 

  • Watson CJ, Hoare CJ, Garrod DR, Carlson GL, Warhurst G (2005) Interferon-gamma selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J Cell Sci 118:5221–5230

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ, Rowland M, Warhurst G (2001) Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 281:C388–C397

    CAS  PubMed  Google Scholar 

  • Werlin SL, Benuri-Silbiger I, Kerem E, Adler SN, Goldin E, Zimmerman J, Malka N, Cohen L, Armoni S, Yatzkan-Israelit Y, Bergwerk A, Aviram M, Bentur L, Mussaffi H, Bjarnasson I, Wilschanski M (2010) Evidence of intestinal inflammation in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 51:304–308

    CAS  PubMed  Google Scholar 

  • Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Reshana Rampersaud for excellent technical assistance. This work was supported by NIH grant AI 083479 to R.C.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. De Lisle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisle, R.C. Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 355, 131–142 (2014). https://doi.org/10.1007/s00441-013-1734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1734-3

Keywords

Navigation