Skip to main content

Advertisement

Log in

Podocytes from the diagnostic and therapeutic point of view

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The central role of podocytes in glomerular diseases makes this cell type an interesting diagnostic tool as well as a therapeutic target. In this review, we discuss the current literature on the use of podocytes and podocyte-specific markers as non-invasive diagnostic tools in different glomerulopathies. Furthermore, we highlight the direct effects of drugs currently used to treat primary glomerular diseases and describe their direct cellular effects on podocytes. A new therapeutic potential is seen in drugs targeting the podocytic actin cytoskeleton which is essential for podocyte foot process structure and function. Incubation of cultured human podocyte cell lines with sera from patients with active glomerular diseases is currently also used to identify novel circulating factors with pathophysiological relevance for the glomerular filtration barrier. In addition, treatment of detached urinary podocytes from patients with substances that restore their cytoskeleton might serve as a novel personalized tool to estimate their potential for podocyte recovery ex vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Achenbach J, Mengel M, Tossidou I, Peters I, Park JK, Haubitz M, Ehrich JH, Haller H, Schiffer M (2008) Parietal epithelia cells in the urine as a marker of disease activity in glomerular diseases. Nephrol Dial Transplant 23(10):3138–3145

    Article  CAS  PubMed  Google Scholar 

  2. Alachkar N, Carter-Monroe N, Reiser J (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370(13):1263–1264

    PubMed  Google Scholar 

  3. Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci 63(18):2119–2134

    Article  CAS  PubMed  Google Scholar 

  4. Benigni A, Gagliardini E, Remuzzi G (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370(13):1261–1263

    Article  CAS  PubMed  Google Scholar 

  5. Bierzynska A, Saleem M (2017) Recent advances in understanding and treating nephrotic syndrome. F1000Res 6:121

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen D, Jefferson B, Harvey SJ, Zheng K, Gartley CJ, Jacobs RM, Thorner PS (2003) Cyclosporine a slows the progressive renal disease of alport syndrome (X-linked hereditary nephritis): results from a canine model. J Am Soc Nephrol 14(3):690–698

    Article  CAS  PubMed  Google Scholar 

  7. Craici IM, Wagner SJ, Bailey KR, Fitz-Gibbon PD, Wood-Wentz CM, Turner ST, Hayman SR, White WM, Brost BC, Rose CH, Grande JP, Garovic VD (2013) Podocyturia predates proteinuria and clinical features of preeclampsia: longitudinal prospective study. Hypertension 61(6):1289–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davin JC (2016) The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol 31(2):207–215

    Article  PubMed  Google Scholar 

  9. El-Reshaid K, Sallam HT, Hakim AA, Al-Attiyah R (2012) Rituximab in treatment of idiopathic glomerulopathy. Saudi J Kidney Dis Transpl 23(5):973–978

    Article  PubMed  Google Scholar 

  10. Fall B, Scott CR, Mauer M, Shankland S, Pippin J, Jefferson JA, Wallace E, Warnock D, Najafian B (2016) Urinary podocyte loss is increased in patients with Fabry disease and correlates with clinical severity of Fabry nephropathy. PLoS One 11(12):e0168346

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14(9):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3(85):85ra46

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fujiwara Y (1984) An ultrastructural study of the effect of the steroid in puromycin aminonucleoside nephrosis rats. Virchows Arch A Pathol Anat Histopathol 405(1):11–24

    Article  CAS  PubMed  Google Scholar 

  14. Fukuda A, Wickman LT, Venkatareddy MP, Wang SQ, Chowdhury MA, Wiggins JE, Shedden KA, Wiggins RC (2012) Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant 27(11):4079–4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, Johnson RJ (2009) Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 20(2):260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, Alachkar N and Johnson RJ (2014) Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol

  17. Garovic VD, Wagner SJ, Turner ST, Rosenthal DW, Watson WJ, Brost BC, Rose CH, Gavrilova L, Craigo P, Bailey KR, Achenbach J, Schiffer M, Grande JP (2007) Urinary podocyte excretion as a marker for preeclampsia. Am J Obstet Gynecol 196(4):320.e1–320.e7

    Article  Google Scholar 

  18. Gellermann J, Stefanidis CJ, Mitsioni A, Querfeld U (2010) Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol 25(7):1285–1289

    Article  PubMed  Google Scholar 

  19. Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S (2010) Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J 29(21):3593–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu C, Chang J, Shchedrina VA, Pham VA, Hartwig JH, Suphamungmee W, Lehman W, Hyman BT, Bacskai BJ, Sever S (2014) Regulation of dynamin oligomerization in cells: the role of dynamin-actin interactions and its GTPase activity. Traffic 15(8):819–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu C, Lee HW, Garborcauskas G, Reiser J, Gupta V, Sever S (2017) Dynamin autonomously regulates podocyte focal adhesion maturation. J Am Soc Nephrol 28(2):446–451

    Article  PubMed  Google Scholar 

  22. Hara M, Yanagihara T, Kihara I (2001) Urinary podocytes in primary focal segmental glomerulosclerosis. Nephron 89(3):342–347

    Article  CAS  PubMed  Google Scholar 

  23. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356(6370):607–609

    Article  CAS  PubMed  Google Scholar 

  24. Ishimoto T, Cara-Fuentes G, Wang H, Shimada M, Wasserfall CH, Winter WE, Rivard CJ, Araya CE, Saleem MA, Mathieson PW, Johnson RJ, Garin EH (2013) Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr Nephrol 28(9):1803–1812

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jefferson JA, Nelson PJ, Najafian B, Shankland SJ (2011) Podocyte disorders: core curriculum 2011. Am J Kidney Dis 58(4):666–677

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jim B, Jean-Louis P, Qipo A, Garry D, Mian S, Matos T, Provenzano C, Acharya A (2012) Podocyturia as a diagnostic marker for preeclampsia amongst high-risk pregnant patients. J Pregnancy 2012:984630

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kandasamy Y, Smith R, Lumbers ER, Rudd D (2014) Nephrin—a biomarker of early glomerular injury. Biomark Res 2:21-7771-2-21. eCollection 2014

    Article  Google Scholar 

  28. Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L, Kershaw D, Wiggins R (2001) Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 60(3):957–968

    Article  CAS  PubMed  Google Scholar 

  29. Kronbichler A, Saleem MA, Meijers B, Shin JI (2016) Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lasagni L, Romagnani P (2013) Basic research: podocyte progenitors and ectopic podocytes. Nat Rev Nephrol 9(12):715–716

    Article  CAS  PubMed  Google Scholar 

  31. Li JZ, Liu Y, E J, Huang HC, Yu F, Zou WZ, Wang HY (2007) The significance of urinary podocytes in patients with active lupus nephritis. Zhonghua Nei Ke Za Zhi 46(2):127–130

    CAS  PubMed  Google Scholar 

  32. Liapis H, Romagnani P, Anders HJ (2013) New insights into the pathology of podocyte loss: mitotic catastrophe. Am J Pathol 183(5):1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin JS, Susztak K (2016) Podocytes: the weakest link in diabetic kidney disease. Curr Diab Rep 16(5):45-016-0735-5

    Article  Google Scholar 

  34. Lioudaki E, Stylianou KG, Petrakis I, Kokologiannakis G, Passam A, Mikhailidis DP, Daphnis EK, Ganotakis ES (2015) Increased urinary excretion of podocyte markers in normoalbuminuric patients with diabetes. Nephron 131(1):34–42

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Gao X, Xu H, Feng C, Kuang X, Li Z, Zha X (2012) Alpha-Actinin-4 is involved in the process by which dexamethasone protects actin cytoskeleton stabilization from adriamycin-induced podocyte injury. Nephrology (Carlton) 17(8):669–675

    Article  CAS  Google Scholar 

  36. Malina M, Cinek O, Janda J, Seeman T (2051-2053) Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutation. Pediatr Nephrol 24(10):2009

    Google Scholar 

  37. Mallipattu SK, He JC (2016) The podocyte as a direct target for treatment of glomerular disease? Am. J Physiol Renal Physiol 311(1):F46–F51

    Article  CAS  Google Scholar 

  38. Merscher-Gomez S, Guzman J, Pedigo CE, Lehto M, Aguillon-Prada R, Mendez A, Lassenius MI, Forsblom C, Yoo T, Villarreal R, Maiguel D, Johnson K, Goldberg R, Nair V, Randolph A, Kretzler M, Nelson RG, Burke GW 3rd, Groop PH, Fornoni A, FinnDiane Study Group (2013) Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62(11):3817–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Motonishi S, Nangaku M, Wada T, Ishimoto Y, Ohse T, Matsusaka T, Kubota N, Shimizu A, Kadowaki T, Tobe K, Inagi R (2015) Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in injured podocytes. J Am Soc Nephrol 26(8):1939–1959

    Article  CAS  PubMed  Google Scholar 

  40. Mueller-Deile J, Kumpers P, Achenbach J, Park JK, Mengel M, Haller H, Schiffer M (2012) Podocalyxin-positive glomerular epithelial cells in urine correlate with a positive outcome in FSGS. J Nephrol 25(5):802–809

    Article  PubMed  Google Scholar 

  41. Muller M, Renkawitz R (1991) The glucocorticoid receptor. Biochim Biophys Acta 1088(2):171–182

    Article  CAS  PubMed  Google Scholar 

  42. Muller-Deile J, Schiffer M (2016) Podocyte directed therapy of nephrotic syndrome-can we bring the inside out. Pediatr Nephrol 31(3):393–405

    Article  PubMed  Google Scholar 

  43. Muller-Deile J, Teng B, Schenk H, Haller H, Reiser J, Sever S, Schiffer M (2016) Drugs targeting dynamin can restore cytoskeleton and focal contact alterations of urinary podocytes derived from patients with nephrotic syndrome. Ann Transl Med 4(21):439

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13(12):3005–3015

    Article  PubMed  Google Scholar 

  45. Mundel P, Heid HW, Mundel TM, Kruger M, Reiser J, Kriz W (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139(1):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Sekizuka K, Ebihara I, Koide H (2000) Urinary podocytes for the assessment of disease activity in lupus nephritis. Am J Med Sci 320(2):112–116

    Article  CAS  PubMed  Google Scholar 

  47. Nakatsue T, Koike H, Han GD, Suzuki K, Miyauchi N, Yuan H, Salant DJ, Gejyo F, Shimizu F, Kawachi H (2005) Nephrin and podocin dissociate at the onset of proteinuria in experimental membranous nephropathy. Kidney Int 67(6):2239–2253

    Article  CAS  PubMed  Google Scholar 

  48. Ng DP, Tai BC, Tan E, Leong H, Nurbaya S, Lim XL, Chia KS, Wong CS, Lim WY, Holthofer H (2011) Nephrinuria associates with multiple renal traits in type 2 diabetes. Nephrol Dial Transplant 26(8):2508–2514

    Article  CAS  PubMed  Google Scholar 

  49. Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD, Bakker M, Bindels RJ, de Boer RA, Moller CC, Hamming I, Navis G, Wetzels JF, Berden JH, Reiser J, Faul C, van der Vlag J (2011) Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol 179(4):1719–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ono S, Kume S, Yasuda-Yamahara M, Yamahara K, Takeda N, Chin-Kanasaki M, Araki H, Sekine O, Yokoi H, Mukoyama M, Uzu T, Araki SI and Maegawa H (2017) O-linked beta-N-acetylglucosamine modification of proteins is essential for foot process maturation and survival in podocytes. Nephrol Dial Transplant

  51. Patari A, Forsblom C, Havana M, Taipale H, Groop PH, Holthofer H (2003) Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes 52(12):2969–2974

    Article  PubMed  Google Scholar 

  52. Pereira EM, Silva AS, Labilloy A, Monte Neto JT, Monte SJ (2016) Podocyturia in Fabry disease. J Bras Nefrol 38(1):49–53

    PubMed  Google Scholar 

  53. Perosa F, Favoino E, Caragnano MA, Dammacco F (2006) Generation of biologically active linear and cyclic peptides has revealed a unique fine specificity of rituximab and its possible cross-reactivity with acid sphingomyelinase-like phosphodiesterase 3b precursor. Blood 107(3):1070–1077

    Article  CAS  PubMed  Google Scholar 

  54. Petrica L, Vlad M, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Popescu R, Gluhovschi C, Matusz P, Velciov S, Bob F, Ursoniu S and Vlad D (2017) Podocyturia parallels proximal tubule dysfunction in type 2 diabetes mellitus patients independently of albuminuria and renal function decline: a cross-sectional study. J Diabetes Complications

  55. Ransom RF, Vega-Warner V, Smoyer WE, Klein J (2005) Differential proteomic analysis of proteins induced by glucocorticoids in cultured murine podocytes. Kidney Int 67(4):1275–1285

    Article  CAS  PubMed  Google Scholar 

  56. Reiser J, Sever S (2013) Podocyte biology and pathogenesis of kidney disease. Annu Rev Med 64:357–366

    Article  CAS  PubMed  Google Scholar 

  57. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113(10):1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sato Y, Wharram BL, Lee SK, Wickman L, Goyal M, Venkatareddy M, Chang JW, Wiggins JE, Lienczewski C, Kretzler M, Wiggins RC (2009) Urine podocyte mRNAs mark progression of renal disease. J Am Soc Nephrol 20(5):1041–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, Bottinger EP (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108(6):807–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiffer M, Teng B, Gu C, Shchedrina VA, Kasaikina M, Pham VA, Hanke N, Rong S, Gueler F, Schroder P, Tossidou I, Park JK, Staggs L, Haller H, Erschow S, Hilfiker-Kleiner D, Wei C, Chen C, Tardi N, Hakroush S, Selig MK, Vasilyev A, Merscher S, Reiser J, Sever S (2015) Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat Med 21(6):601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schlondorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296(3):C558–C569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schmid H, Henger A, Cohen CD, Frach K, Grone HJ, Schlondorff D, Kretzler M (2003) Gene expression profiles of podocyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J Am Soc Nephrol 14(11):2958–2966

    Article  CAS  PubMed  Google Scholar 

  63. Seiler MW, Rennke HG, Venkatachalam MA, Cotran RS (1977) Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab Investig 36(1):48–61

    CAS  PubMed  Google Scholar 

  64. Shirato I, Sakai T, Kimura K, Tomino Y, Kriz W (1996) Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am J Pathol 148(4):1283–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Skoberne A, Konieczny A, Schiffer M (2009) Glomerular epithelial cells in the urine: what has to be done to make them worthwhile. Am J Physiol Renal Physiol 296(2):F230–F241

    Article  CAS  PubMed  Google Scholar 

  66. Smoyer WE, Mundel P (1998) Regulation of podocyte structure during the development of nephrotic syndrome. J Mol Med (Berl) 76(3–4):172–183

    Article  CAS  Google Scholar 

  67. Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S, Volpicelli-Daley L, Tian X, Wu Y, Ma H, Son SH, Zheng R, Moeckel G, Cremona O, Holzman LB, De Camilli P, Ishibe S (2012) Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 122(12):4401–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Son GH, Kwon JY, Lee S, Park J, Kim YJ, Yun B, Park JH (2013) Comparison of serum and urinary nephrin levels between normal pregnancies and severe preeclampsia. Eur J Obstet Gynecol Reprod Biol 166(2):139–144

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi Y, Ikezumi Y, Saitoh A (2017) Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycin-induced nephropathy independent of B-lymphocytes. Nephrology (Carlton) 22(1):49–57

    Article  CAS  Google Scholar 

  70. Tharaux PL, Huber TB (2012) How many ways can a podocyte die. Semin Nephrol 32(4):394–404

    Article  CAS  PubMed  Google Scholar 

  71. Trachtman H, Del Pizzo R, Valderrama E, Gauthier B (1990) The renal functional and structural consequences of corticosteroid and angiotensin-converting enzyme inhibitor therapy in chronic puromycin aminonucleoside nephropathy. Pediatr Nephrol 4(5):501–504

    Article  CAS  PubMed  Google Scholar 

  72. Trimarchi H, Canzonieri R, Schiel A, Politei J, Stern A, Andrews J, Paulero M, Rengel T, Araoz A, Forrester M, Lombi F, Pomeranz V, Iriarte R, Young P, Muryan A, Zotta E (2016) Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. J Nephrol 29(6):791–797

    Article  CAS  PubMed  Google Scholar 

  73. Turner RJ, Bloemenkamp KW, Penning ME, Bruijn JA, Baelde HJ (2015) From glomerular endothelium to podocyte pathobiology in preeclampsia: a paradigm shift. Curr Hypertens Rep 17(7):54-015-0566-9

    Article  Google Scholar 

  74. Vivarelli M, Massella L, Ruggiero B, Emma F (2017) Minimal change disease. Clin J Am Soc Nephrol 12(2):332–345

    Article  PubMed  Google Scholar 

  75. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 285(1):F40–F48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183(6):2541–2550

    Article  CAS  PubMed  Google Scholar 

  77. Wang G, Lai FM, Lai KB, Chow KM, Li KT, Szeto CC (2007) Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy. Nephron Clin Pract 106(4):c169–c179

    Article  CAS  PubMed  Google Scholar 

  78. Wang G, Lai FM, Tam LS, Li KM, Lai KB, Chow KM, Li KT, Szeto CC (2007) Messenger RNA expression of podocyte-associated molecules in urinary sediment of patients with lupus nephritis. J Rheumatol 34(12):2358–2364

    CAS  PubMed  Google Scholar 

  79. Wang G, Lai FM, Lai KB, Chow KM, Kwan BC, Li KT, Szeto CC (2010) Intra-renal and urinary mRNA expression of podocyte-associated molecules for the estimation of glomerular podocyte loss. Ren Fail 32(3):372–379

    Article  PubMed  Google Scholar 

  80. Wang Y, Zhao S, Loyd S, Groome LJ (2012) Increased urinary excretion of nephrin, podocalyxin, and betaig-h3 in women with preeclampsia. Am J Physiol Renal Physiol 302(9):F1084–F1089

    Article  CAS  PubMed  Google Scholar 

  81. Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, McMahan JL, Radeva M, Heil KM, Trautmann A, Anarat A, Emre S, Ghiggeri GM, Ozaltin F, Haffner D, Gipson DS, Kaskel F, Fischer DC, Schaefer F, Reiser J, PodoNet and FSGS CT Study Consortia (2012) Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol 23(12):2051–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16(10):2941–2952

    Article  CAS  PubMed  Google Scholar 

  83. White WM, Garrett AT, Craici IM, Wagner SJ, Fitz-Gibbon PD, Butters KA, Brost BC, Rose CH, Grande JP, Garovic VD (2014) Persistent urinary podocyte loss following preeclampsia may reflect subclinical renal injury. PLoS One 9(3):e92693

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71(12):1205–1214

    Article  CAS  PubMed  Google Scholar 

  85. Yan K, Kudo A, Hirano H, Watanabe T, Tasaka T, Kataoka S, Nakajima N, Nishibori Y, Shibata T, Kohsaka T, Higashihara E, Tanaka H, Watanabe H, Nagasawa T, Awa S (1999) Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus. Kidney Int 56(1):65–73

    Article  CAS  PubMed  Google Scholar 

  86. Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, Chen L, Ciancio G, Faridi MH, Behr D, Campbell KN, Chang JM, Chen HC, Oh J, Faul C, Arnaout MA, Fiorina P, Gupta V, Greka A, Burke GW 3rd, Mundel P (2013) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 369(25):2416–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu-Shengyou, Li Y (2013) Dexamethasone inhibits podocyte apoptosis by stabilizing the PI3K/Akt signal pathway. Biomed Res Int 2013:326986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhai T, Furuta I, Akaishi R, Kawabata K, Chiba K, Umazume T, Ishikawa S, Yamada T, Morikawa M, Minakami H (2016) Feasibility of nephrinuria as a screening tool for the risk of pre-eclampsia: prospective observational study. BMJ Open 6(8):e011229-2016-011229

    Article  Google Scholar 

  89. Zhang B, Shi W (2012) Is the antiproteinuric effect of cyclosporine a independent of its immunosuppressive function in T cells? Int J Nephrol 2012:809456

    PubMed  PubMed Central  Google Scholar 

  90. Zheng M, Lv LL, Ni J, Ni HF, Li Q, Ma KL, Liu BC (2011) Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One 6(5):e20431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janina Müller-Deile or Mario Schiffer.

Additional information

This article is published as part of the Special Issue on Functional anatomy of the kidney in health and disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Deile, J., Schiffer, M. Podocytes from the diagnostic and therapeutic point of view. Pflugers Arch - Eur J Physiol 469, 1007–1015 (2017). https://doi.org/10.1007/s00424-017-1993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1993-z

Keywords

Navigation