Skip to main content

Advertisement

Log in

From Glomerular Endothelium to Podocyte Pathobiology in Preeclampsia: a Paradigm Shift

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Preeclampsia is a pregnancy-specific syndrome characterized by renal dysfunction and high blood pressure. When evaluated with light microscopy, the renal lesion of preeclampsia is marked by endothelial cell swelling and the appearance of bloodless glomeruli. However, regarding the pathobiology of renal damage in preeclampsia, attention recently has shifted from the glomerular endothelial cells to the podocytes. The angiogenic imbalance in preeclampsia plays a key role in the development of both podocyte and endothelial damage in the glomerular filtration barrier. Here, we review the latest studies on the role of podocytes in the development of renal damage in preeclampsia and on podocytes as potential targets for diagnosis, treatment, and prevention of long-term complications of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. von Schmidt auf Altenstadt JF, Hukkelhoven CW, van Roosmalen J, Bloemenkamp KW. Pre-eclampsia increases the risk of postpartum haemorrhage: a nationwide cohort study in the Netherlands. PLoS ONE. 2013;8(12):e81959. doi:10.1371/journal.pone.0081959.

  2. Khan KS, Wojdyla D, Say L, Gulmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–74.

    Article  PubMed  Google Scholar 

  3. Gillon TE, Pels A, von Dadelszen P, MacDonell K, Magee LA. Hypertensive disorders of pregnancy: a systematic review of international clinical practice guidelines. PLoS ONE. 2014;9(12):e113715. doi:10.1371/journal.pone.0113715.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Myers JE, Kenny LC, McCowan LM, Chan EH, Dekker GA, Poston L, et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. Bjog. 2013;120(10):1215–23.

    Article  CAS  PubMed  Google Scholar 

  5. Hussein W, Lafayette RA. Renal function in normal and disordered pregnancy. Curr Opin Nephrol Hypertens. 2014;23(1):46–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Spargo B, McCartney CP, Winemiller R. Glomerular capillary endotheliosis in toxemia of pregnancy. Arch Pathol. 1959;68:593–9.

    CAS  PubMed  Google Scholar 

  7. Gartner HV, Sammoun A, Wehrmann M, Grossmann T, Junghans R, Weihing C. Preeclamptic nephropathy—an endothelial lesion. A morphological study with a review of the literature. Eur J Obstet Gynecol Reprod Biol. 1998;77(1):11–27.

    Article  CAS  PubMed  Google Scholar 

  8. Cagnoli L, Casanova S, Pasquali S. Correlations between glomerular epithelial changes and proteinuria in different glomerular diseases. [Italian]. Minerva Nefrol. 1980;27(1):155–8.

    Google Scholar 

  9. Buurma AJ, Penning ME, Prins F, Schutte JM, Bruijn JA, Wilhelmus S, et al. Preeclampsia is associated with the presence of transcriptionally active placental fragments in the maternal lung. Hypertension. 2013;62(3):608–13.

    Article  CAS  PubMed  Google Scholar 

  10. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem. 2003;278(15):12605–8.

    Article  CAS  PubMed  Google Scholar 

  13. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):707–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Vigneau C, Lorcy N, Dolley-Hitze T, Jouan F, Arlot-Bonnemains Y, Laguerre B, et al. All anti-vascular endothelial growth factor drugs can induce ‘pre-eclampsia-like syndrome’: a RARe study. Nephrol Dial Transplant. 2014;29(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  15. Muller-Deile J, Schiffer M. Renal involvement in preeclampsia: similarities to VEGF ablation therapy. J Pregnancy. 2011;2011:176973. doi:10.1155/2011/.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Usui J, Glezerman IG, Salvatore SP, Chandran CB, Flombaum CD, Seshan SV. Clinicopathological spectrum of kidney diseases in cancer patients treated with vascular endothelial growth factor inhibitors: a report of 5 cases and review of Literature. Hum Pathol. 2014;45(9):1918–27.

    Article  CAS  PubMed  Google Scholar 

  17. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Veron D, Villegas G, Aggarwal PK, Bertuccio C, Jimenez J, Velazquez H, et al. Acute podocyte vascular endothelial growth factor (VEGF-A) knockdown disrupts alphaVbeta3 integrin signaling in the glomerulus. PLoS ONE. 2012;7(7):e40589. doi:10.1371/journal.pone.0040589. This study describes an inducible podocyte-specific VEGF-A knockdown mouse model. Podocyte-specific VEGF-A knockdown results in endothelial cell swelling and podocyte foot process effacement in vivo. VEGF-A knockdown also leads to decreased alphaVbeta3 integrin signaling, an integrin essential for the withstanding of mechanical stress by the podocyte.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sison K, Eremina V, Baelde H, Min W, Hirashima M, Fantus IG, et al. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J Am Soc Nephrol. 2010;21(10):1691–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol. 2006;290(2):H560–76.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Liu H, Du H, Qiao F, Li Y, Shi X, et al. Upregulation of sFlt-1 by trophoblasts induces the barrier dysfunction of glomerular endothelial cells. J Huazhong Univ Sci Technol Med Sci. 2011;31(6):815–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Zhang T, Fang M, Shen N, Wang D, Teng J, et al. Podocytes protect glomerular endothelial cells from hypoxic injury via deSUMOylation of HIF-1alpha signaling. Int J Biochem Cell Biol. 2015;58:17–27.

    Article  CAS  PubMed  Google Scholar 

  23. Veron D, Reidy KJ, Bertuccio C, Teichman J, Villegas G, Jimenez J, et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int. 2010;77(11):989–99.

    Article  CAS  PubMed  Google Scholar 

  24. Ku CH, White KE, Dei Cas A, Hayward A, Webster Z, Bilous R, et al. Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes. 2008;57(10):2824–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ostalska-Nowicka D, Malinska A, Zabel M, Witkiewicz W, Nowicki M. Nephrotic syndrome unfavorable course correlates with downregulation of podocyte vascular endothelial growth factor receptor (VEGFR)-2. Folia Histochem Cytobiol. 2011;49(3):472–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hohenstein B, Colin M, Foellmer C, Amann KU, Brekken RA, Daniel C, et al. Autocrine VEGF-VEGF-R loop on podocytes during glomerulonephritis in humans. Nephrol Dial Transplant. 2010;25(10):3170–80.

    Article  CAS  PubMed  Google Scholar 

  27. Bertuccio C, Veron D, Aggarwal PK, Holzman L, Tufro A. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem. 2011;286(46):39933–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  29. Baelde HJ, Eikmans M, Lappin DW, Doran PP, Hohenadel D, Brinkkoetter PT, et al. Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int. 2007;71(7):637–45.

    Article  CAS  PubMed  Google Scholar 

  30. Thilo F, Liu Y, Loddenkemper C, Schuelein R, Schmidt A, Yan Z, et al. VEGF regulates TRPC6 channels in podocytes. Nephrol Dial Transplant. 2012;27(3):921–9. This study investigates the regulatory effect of VEGF on TRPC6, a calcium ion channel found on podocyte foot processes and the slit diaphragms. VEGF165 significantly increases TRPC6 mRNA and protein levels, indicating that VEGF regulates podocyte structure via the expression of TRPC6.

  31. Li SY, Huang PH, Yang AH, Tarng DC, Yang WC, Lin CC, et al. Matrix metalloproteinase-9 deficiency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int. 2014;86(2):358–69.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Misaki T, Taupin V, Eguchi A, Ghosh P, Farquhar MG. GIV/girdin links vascular endothelial growth factor signaling to Akt survival signaling in podocytes independent of nephrin. J Am Soc Nephrol. 2015;26(2):314–27.

    Article  CAS  PubMed  Google Scholar 

  33. Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK, et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell. 2012;151(2):384–99. This study discovered the presence of a podocytal autocrine sFlt-1 loop in vitro and in a mouse model. sFlt-1 knockdown in mice resulted in podocytal flattening, cytoskeletal rearrangements and proteinuria. In vitro, sFlt-1 binds to lipid rafts and co-localizes with nephrin.

  34. Garovic VD, Wagner SJ, Petrovic LM, Gray CE, Hall P, Sugimoto H, et al. Glomerular expression of nephrin and synaptopodin, but not podocin, is decreased in kidney sections from women with preeclampsia. Nephrol Dial Transplant. 2007;22(4):1136–43.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao S, Gu X, Groome LJ, Wang Y. Decreased nephrin and GLEPP-1, but increased VEGF, Flt-1, and nitrotyrosine, expressions in kidney tissue sections from women with preeclampsia. Reprod Sci. 2009;16(10):970–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhao S, Gu Y, Coates G, Groome LJ, Saleem MA, Mathieson PW, et al. Altered nephrin and podoplanin distribution is associated with disturbed polarity protein PARD-3 and PARD-6 expressions in podocytes from preeclampsia. Reprod Sci. 2011;18(8):772–80.

    Article  CAS  PubMed  Google Scholar 

  37. Henao DE, Arias LF, Mathieson PW, Ni L, Welsh GI, Bueno JC, et al. Preeclamptic sera directly induce slit-diaphragm protein redistribution and alter podocyte barrier-forming capacity. Nephron Exp Nephrol. 2008;110(3):e73–81.

    Article  CAS  PubMed  Google Scholar 

  38. Henao DE, Cadavid AP, Saleem MA. Exogenous vascular endothelial growth factor supplementation can restore the podocyte barrier-forming capacity disrupted by sera of preeclamptic women. J Obstet Gynaecol Res. 2013;39(1):46–52. In this study human cultured podocytes were exposed to sera from preeclamptic women and healthy pregnant women. Sera from preeclamptic women contained more sFlt-1 and less VEGF and disrupted podocyte barrier-forming capacity. Adding VEGF to these sera attenuated this effect.

    Article  PubMed  Google Scholar 

  39. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol. 2013;304(4):F333–47.

    Article  CAS  PubMed  Google Scholar 

  40. Collino F, Bussolati B, Gerbaudo E, Marozio L, Pelissetto S, Benedetto C, et al. Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am J Physiol Renal Physiol. 2008;294(5):F1185–94.

    Article  CAS  PubMed  Google Scholar 

  41. Eyre J, Burton JO, Saleem MA, Mathieson PW, Topham PS, Brunskill NJ. Monocyte- and endothelial-derived microparticles induce an inflammatory phenotype in human podocytes. Nephron Exp Nephrol. 2011;119(3):e58–66.

    Article  CAS  PubMed  Google Scholar 

  42. Henao DE, Saleem MA. Proteinuria in preeclampsia from a podocyte injury perspective. Curr Hypertens Rep. 2013;15(6):600–5.

    Article  CAS  PubMed  Google Scholar 

  43. Buurma A, Cohen D, Veraar K, Schonkeren D, Claas FH, Bruijn JA, et al. Preeclampsia is characterized by placental complement dysregulation. Hypertension. 2012;60(5):1332–7.

    Article  CAS  PubMed  Google Scholar 

  44. Lynch AM, Murphy JR, Byers T, Gibbs RS, Neville MC, Giclas PC, et al. Alternative complement pathway activation fragment Bb in early pregnancy as a predictor of preeclampsia. Am J Obstet Gynecol. 2008;198(4):385.e1–9.

    Article  Google Scholar 

  45. Penning ME, Chua JS, van Kooten C, Zandbergen M, Buurma A, Schutte JM et al. Classical complement pathway activation in the kidneys of women with preeclampsia. Hypertension. 2015:Accepted for publication.

  46. Burwick RM, Easter SR, Dawood HY, Yamamoto HS, Fichorova RN, Feinberg BB. Complement activation and kidney injury molecule-1-associated proximal tubule injury in severe preeclampsia. Hypertension. 2014;64(4):833–8.

    Article  CAS  PubMed  Google Scholar 

  47. Burwick RM, Fichorova RN, Dawood HY, Yamamoto HS, Feinberg BB. Urinary excretion of C5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension. 2013;62(6):1040–5.

    Article  CAS  PubMed  Google Scholar 

  48. Wang W, Irani RA, Zhang Y, Ramin SM, Blackwell SC, Tao L, et al. Autoantibody-mediated complement C3a receptor activation contributes to the pathogenesis of preeclampsia. Hypertension. 2012;60(3):712–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hayman SR, Calle JC, Jatoi A, Craici IM, Wagner SJ, Weaver AL, et al. Urinary podocyte excretion and proteinuria in patients treated with antivascular endothelial growth factor therapy for solid tumor malignancies. Oncology. 2014;86(5–6):271–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bhide A, Rana R, Dhavilkar M, Amodio-Hernandez M, Deshpande D, Caric V. The value of the urinary protein: creatinine ratio for the detection of significant proteinuria in women with suspected preeclampsia. Acta Obstet Gynecol Scand. 2015. doi:10.1111/aogs.12624.

    PubMed  Google Scholar 

  51. Garovic VD. The role of the podocyte in preeclampsia. Clin J Am Soc Nephrol. 2014;9(8):1337–40.

    Article  CAS  PubMed  Google Scholar 

  52. Yu D, Petermann A, Kunter U, Rong S, Shankland SJ, Floege J. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol. 2005;16(6):1733–41.

    Article  CAS  PubMed  Google Scholar 

  53. Garovic VD, Wagner SJ, Turner ST, Rosenthal DW, Watson WJ, Brost BC. Urinary podocyte excretion as a marker for preeclampsia. Am J Obstet Gynecol. 2007;196(4):320 e1–7.

    Article  Google Scholar 

  54. Craici IM, Wagner SJ, Bailey KR, Fitz-Gibbon PD, Wood-Wentz CM, Turner ST, et al. Podocyturia predates proteinuria and clinical features of preeclampsia: longitudinal prospective study. Hypertension. 2013;61(6):1289–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kelder TP, Penning ME, Uh HW, Cohen D, Bloemenkamp KW, Bruijn JA, et al. Quantitative polymerase chain reaction-based analysis of podocyturia is a feasible diagnostic tool in preeclampsia. Hypertension. 2012;60(6):1538–44. In this study a new method for the detection of podocyturia is presented. Urine samples from preeclamptic women, healthy controls and women with gestational hypertension were collected and qPCR for VEGF, podocin and nephrin mRNA was performed. qPCR of these podocyte-specific molecules distinguished preeclamptic patients from healthy and hypertensive controls and is a rapid tool for the detection of podocytes in urine.

    Article  CAS  PubMed  Google Scholar 

  56. Eremina V, Baelde HJ, Quaggin SE. Role of the VEGF-A signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol. 2007;106(2):32–7.

    Article  Google Scholar 

  57. Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation. 2014;21(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  58. Mathieson PW. The podocyte as a target for therapies–new and old. Nat Rev Nephrol. 2012;8(1):52–6.

    Article  CAS  Google Scholar 

  59. Wada T, Pippin JW, Marshall CB, Griffin SV, Shankland SJ. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J Am Soc Nephrol. 2005;16(9):2615–25.

    Article  CAS  PubMed  Google Scholar 

  60. Fujii Y, Khoshnoodi J, Takenaka H, Hosoyamada M, Nakajo A, Bessho F, et al. The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int. 2006;69(8):1350–9.

    CAS  PubMed  Google Scholar 

  61. Macconi D, Sangalli F, Bonomelli M, Conti S, Condorelli L, Gagliardini E, et al. Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. Am J Pathol. 2009;174(3):797–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Friedman JM. ACE inhibitors and congenital anomalies. N Engl J Med. 2006;354(23):2498–500.

    Article  CAS  PubMed  Google Scholar 

  63. Sakurai N, Kuroiwa T, Ikeuchi H, Hiramatsu N, Takeuchi S, Tomioka M, et al. Fluvastatin prevents podocyte injury in a murine model of HIV-associated nephropathy. Nephrol Dial Transplant. 2009;24(8):2378–83.

    Article  CAS  PubMed  Google Scholar 

  64. Ramma W, Ahmed A. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia. J Reprod Immunol. 2014;101–102:153–60.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Lefkou E, Mamopoulos A, Fragakis N, Dagklis T, Vosnakis C, Nounopoulos E, et al. Clinical improvement and successful pregnancy in a preeclamptic patient with antiphospholipid syndrome treated with pravastatin. Hypertension. 2014;63(5):e118–9.

    Article  CAS  PubMed  Google Scholar 

  66. Morton S, Thangaratinam S. Statins in pregnancy. Curr Opin Obstet Gynecol. 2013;25(6):433–40.

    Article  PubMed  Google Scholar 

  67. Fukusumi Y, Miyauchi N, Hashimoto T, Saito A, Kawachi H. Therapeutic target for nephrotic syndrome: Identification of novel slit diaphragm associated molecules. World J Nephrol. 2014;3(3):77–84.

    Article  PubMed Central  PubMed  Google Scholar 

  68. He FF, Chen S, Su H, Meng XF, Zhang C. Actin-associated proteins in the pathogenesis of podocyte injury. Curr Genom. 2013;14(7):477–84.

    Article  CAS  Google Scholar 

  69. Arif E, Rathore YS, Kumari B, Ashish F, Wong HN, Holzman LB, et al. Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J Biol Chem. 2014;289(14):9502–18. This study shows that Neph1 signaling inhibition prevents podocyte damage in vivo and in vitro in PAN and adriamycine renal injury models. Inhibition of Neph1 phosphorylation prevents mislocalization of Neph1 and maintains the normal cytoskeletal structure in podocytes.

  70. McDonald SD, Han Z, Walsh MW, Gerstein HC, Devereaux PJ. Kidney disease after preeclampsia: a systematic review and meta-analysis. Am J Kidney Dis. 2010;55(6):1026–39.

    Article  PubMed  Google Scholar 

  71. Wang IK, Muo CH, Chang YC, Liang CC, Chang CT, Lin SY, et al. Association between hypertensive disorders during pregnancy and end-stage renal disease: a population-based study. Cmaj. 2013;185(3):207–13.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Vikse BE, Irgens LM, Karumanchi SA, Thadhani R, Reisaeter AV, Skjaerven R. Familial factors in the association between preeclampsia and later ESRD. Clin J Am Soc Nephrol. 2012;7(11):1819–26. This large study using the Norwegian Population Registry shows that the increased risk of end-stage renal disease after preeclampsia is not explained by familial aggregation of risk factors, but that the preeclampsia itself probably leads to kidney damage.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359(8):800–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13(12):3005–15.

    Article  PubMed  Google Scholar 

  75. Hara M, Yanagihara T, Kihara I. Urinary podocytes in primary focal segmental glomerulosclerosis. Nephron. 2001;89(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  76. Vikse BE, Hallan S, Bostad L, Leivestad T, Iversen BM. Previous preeclampsia and risk for progression of biopsy-verified kidney disease to end-stage renal disease. Nephrol Dial Transplant. 2010;25(10):3289–96.

    Article  PubMed  Google Scholar 

  77. White WM, Garrett AT, Craici IM, Wagner SJ, Fitz-Gibbon PD, Butters KA, et al. Persistent urinary podocyte loss following preeclampsia may reflect subclinical renal injury. PLoS ONE. 2014;9(3):e92693. doi:10.1371/journal.pone.0092693. In this study urine samples from women with preeclampsia and normotensive pregnant women were collected from 24 hours before up to five to eight weeks after delivery. Altough proteinuria normalized postpartum, three out of ten preeclampsia patients still had podocyturia postpartum whereas normotensive women had no podocyturia.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol. 2009;20(2):333–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Hakroush S, Cebulla A, Schaldecker T, Behr D, Mundel P, Weins A. Extensive podocyte loss triggers a rapid parietal epithelial cell response. J Am Soc Nephrol. 2014;25(5):927–38.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Smeets B, Kuppe C, Sicking EM, Fuss A, Jirak P, van Kuppevelt TH, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22(7):1262–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Penning ME, Bloemenkamp KW, van der Zon T, Zandbergen M, Schutte JM, Bruijn JA, et al. Association of preeclampsia with podocyte turnover. Clin J Am Soc Nephrol. 2014;9(8):1377–85. In this study, renal samples from women with preeclampsia and pregnant controls were collected from the nationwide Dutch pathology database PALGA. Endotheliosis was not associated with preeclampsia, but increased podocyte turnover and activation of parietal epithelial cells were.

    Article  CAS  PubMed  Google Scholar 

  82. Schleidgen S, Klingler C, Bertram T, Rogowski WH, Marckmann G. What is personalized medicine: sharpening a vague term based on a systematic literature review. BMC Med Ethics. 2013;14:55.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Kenny LC, Broadhurst DI, Dunn W, Brown M, North RA, McCowan L, et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010;56(4):741–9.

    Article  CAS  PubMed  Google Scholar 

  84. Myers JE, Tuytten R, Thomas G, Laroy W, Kas K, Vanpoucke G, et al. Integrated proteomics pipeline yields novel biomarkers for predicting preeclampsia. Hypertension. 2013;61(6):1281–8.

    Article  CAS  PubMed  Google Scholar 

  85. Navaratnam K, Alfirevic Z, Baker PN, Gluud C, Gruttner B, Kublickiene K, et al. A multi-centre phase IIa clinical study of predictive testing for preeclampsia: improved pregnancy outcomes via early detection (IMPROvED). BMC Pregnancy Childbirth. 2013;13:226.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rosanne J. Turner, Kitty W.M. Bloemenkamp, Marlies E. Penning, Jan Anthonie Bruijn, and Hans J. Baelde declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Baelde.

Additional information

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, R.J., Bloemenkamp, K.W.M., Penning, M.E. et al. From Glomerular Endothelium to Podocyte Pathobiology in Preeclampsia: a Paradigm Shift. Curr Hypertens Rep 17, 54 (2015). https://doi.org/10.1007/s11906-015-0566-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0566-9

Keywords

Navigation