Skip to main content

Advertisement

Log in

A pure chloride channel mutant of CLC-5 causes Dent’s disease via insufficient V-ATPase activation

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Dent’s disease is characterized by defective endocytosis in renal proximal tubules (PTs) and caused by mutations in the 2Cl/H+ exchanger, CLC-5. However, the pathological role of endosomal acidification in endocytosis has recently come into question. To clarify the mechanism of pathogenesis for Dent’s disease, we examined the effects of a novel gating glutamate mutation, E211Q, on CLC-5 functions and endosomal acidification. In Xenopus oocytes, wild-type (WT) CLC-5 showed outward-rectifying currents that were inhibited by extracellular acidosis, but E211Q and an artificial pure Cl channel mutant, E211A, showed linear currents that were insensitive to extracellular acidosis. Moreover, depolarizing pulse trains induced a robust reduction in the surface pH of oocytes expressing WT CLC-5 but not E211Q or E211A, indicating that the E211Q mutant functions as a pure Cl channel similar to E211A. In HEK293 cells, E211A and E211Q stimulated endosomal acidification and hypotonicity-inducible vacuolar-type H+-ATPase (V-ATPase) activation at the plasma membrane. However, the stimulatory effects of these mutants were reduced compared with WT CLC-5. Furthermore, gene silencing experiments confirmed the functional coupling between V-ATPase and CLC-5 at the plasma membrane of isolated mouse PTs. These results reveal for the first time that the conversion of CLC-5 from a 2Cl/H+ exchanger into a Cl channel induces Dent’s disease in humans. In addition, defective endosomal acidification as a result of insufficient V-ATPase activation may still be important in the pathogenesis of Dent’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Accardi A, Kolmakova-Partensky L, Williams C, Miller C (2004) Ionic currents mediated by a prokaryotic homologue of CLC Cl channels. J Gen Physiol 123:109–19. doi:10.1085/jgp.200308935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–7. doi:10.1038/nature02314

    Article  CAS  PubMed  Google Scholar 

  3. Amlal H, Goel A, Soleimani M (1998) Activation of H+-ATPase by hypotonicity: a novel regulatory mechanism for H+ secretion in IMCD cells. Am J Physiol 275:F487–501

    CAS  PubMed  Google Scholar 

  4. Cao X, Yang Q, Qin J, Zhao S, Li X, Fan J, Chen W, Zhou Y, Mao H, Yu X (2012) V-ATPase promotes transforming growth factor-beta-induced epithelial-mesenchymal transition of rat proximal tubular epithelial cells. Am J Physiol Renal Physiol 302:F1121–32. doi:10.1152/ajprenal.00278.2011

    Article  CAS  PubMed  Google Scholar 

  5. Carraro-Lacroix LR, Lessa LM, Bezerra CN, Pessoa TD, Souza-Menezes J, Morales MM, Girardi AC, Malnic G (2010) Role of CFTR and ClC-5 in modulating vacuolar H+-ATPase activity in kidney proximal tubule. Cell Physiol Biochem 26:563–76. doi:10.1159/000322324

    Article  CAS  PubMed  Google Scholar 

  6. Claverie-Martin F, Ramos-Trujillo E, Garcia-Nieto V (2011) Dent’s disease: clinical features and molecular basis. Pediatr Nephrol 26:693–704. doi:10.1007/s00467-010-1657-0

    Article  PubMed  Google Scholar 

  7. D’Antonio C, Molinski S, Ahmadi S, Huan LJ, Wellhauser L, Bear CE (2013) Conformational defects underlie proteasomal degradation of Dent’s disease-causing mutants of ClC-5. Biochem J 452:391–400. doi:10.1042/BJ20121848

    Article  PubMed  Google Scholar 

  8. Dent CE, Friedman M (1964) Hypercalcuric rickets associated with renal tubular damage. Arch Dis Child 39:240–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28. doi:10.1186/1750-1172-5-28

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–94. doi:10.1038/415287a

    Article  CAS  PubMed  Google Scholar 

  11. Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–12. doi:10.1126/science.1082708

    Article  CAS  PubMed  Google Scholar 

  12. Gleixner EM, Canaud G, Hermle T, Guida MC, Kretz O, Helmstadter M, Huber TB, Eimer S, Terzi F, Simons M (2014) V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Rep 8:10–9. doi:10.1016/j.celrep.2014.05.035

    Article  CAS  PubMed  Google Scholar 

  13. Grand T, Mordasini D, L’Hoste S, Pennaforte T, Genete M, Biyeyeme MJ, Vargas-Poussou R, Blanchard A, Teulon J, Lourdel S (2009) Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing. Kidney Int 76:999–1005. doi:10.1038/ki.2009.305

    Article  CAS  PubMed  Google Scholar 

  14. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A 95:8075–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gunther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse—an animal model for Dent’s disease. Pflugers Arch 445:456–62. doi:10.1007/s00424-002-0950-6

    Article  CAS  PubMed  Google Scholar 

  16. Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–6. doi:10.1016/j.bbrc.2005.02.060

    Article  CAS  PubMed  Google Scholar 

  17. Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al-Gazali L, Shimadzu M, Seki G, Fujita T (2005) Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 16:2270–8. doi:10.1681/ASN.2004080667

    Article  CAS  PubMed  Google Scholar 

  18. Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–36. doi:10.1038/ncb1348

    Article  CAS  PubMed  Google Scholar 

  19. Ishida Y, Nayak S, Mindell JA, Grabe M (2013) A model of lysosomal pH regulation. J Gen Physiol 141:705–20. doi:10.1085/jgp.201210930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–4. doi:10.1038/348510a0

    Article  CAS  PubMed  Google Scholar 

  21. Kondo Y, Fromter E (1987) Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflugers Arch 410:481–6

    Article  CAS  PubMed  Google Scholar 

  22. Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–9. doi:10.1038/379445a0

    Article  CAS  PubMed  Google Scholar 

  23. Lobet S, Dutzler R (2006) Ion-binding properties of the ClC chloride selectivity filter. EMBO J 25:24–33. doi:10.1038/sj.emboj.7600909

    Article  CAS  PubMed  Google Scholar 

  24. Lourdel S, Grand T, Burgos J, Gonzalez W, Sepulveda FV, Teulon J (2012) ClC-5 mutations associated with Dent’s disease: a major role of the dimer interface. Pflugers Arch 463:247–56. doi:10.1007/s00424-011-1052-0

    Article  CAS  PubMed  Google Scholar 

  25. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700. doi:10.1146/annurev.bi.55.070186.003311

    Article  CAS  PubMed  Google Scholar 

  26. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–5. doi:10.1038/28190

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura M, Yamazaki O, Shirai A, Horita S, Satoh N, Suzuki M, Hamasaki Y, Noiri E, Kume H, Enomoto Y, Homma Y, Seki G (2015) Preserved Na/HCO3 cotransporter sensitivity to insulin may promote hypertension in metabolic syndrome. Kidney Int 87:535–42. doi:10.1038/ki.2014.351

    Article  CAS  PubMed  Google Scholar 

  28. Nguitragool W, Miller C (2006) Uncoupling of a CLC Cl/H+ exchange transporter by polyatomic anions. J Mol Biol 362:682–90. doi:10.1016/j.jmb.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  29. Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–401. doi:10.1126/science.1188070

    Article  CAS  PubMed  Google Scholar 

  30. Picollo A, Malvezzi M, Accardi A (2010) Proton block of the CLC-5 Cl/H+ exchanger. J Gen Physiol 135:653–9. doi:10.1085/jgp.201010428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–3. doi:10.1038/nature03720

    Article  CAS  PubMed  Google Scholar 

  32. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–73. doi:10.1038/35042597

    Article  CAS  PubMed  Google Scholar 

  33. Rahmati N, Kunzelmann K, Xu J, Barone S, Sirianant L, De Zeeuw CI, Soleimani M (2013) Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V H+-ATPase. Pflugers Arch 465:1583–97. doi:10.1007/s00424-013-1300-6

    Article  CAS  PubMed  Google Scholar 

  34. Sabolic I, Burckhardt G (1986) Characteristics of the proton pump in rat renal cortical endocytotic vesicles. Am J Physiol 250:F817–26

    CAS  PubMed  Google Scholar 

  35. Sakamoto H, Sado Y, Naito I, Kwon TH, Inoue S, Endo K, Kawasaki M, Uchida S, Nielsen S, Sasaki S, Marumo F (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am J Physiol 277:F957–65

    CAS  PubMed  Google Scholar 

  36. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–7. doi:10.1038/nature03860

    Article  CAS  PubMed  Google Scholar 

  37. Schodel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, Amann K, Korbmacher C, Wiesener M, Warnecke C, Kurtz A, Eckardt KU, Willam C (2009) HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol 174:1663–74. doi:10.2353/ajpath.2009.080687

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seki G, Fromter E (1990) The chloride/base exchanger in the basolateral cell membrane of rabbit renal proximal tubule S3 segment requires bicarbonate to operate. Pflugers Arch 417:37–41

    Article  CAS  PubMed  Google Scholar 

  39. Sekine T, Komoda F, Miura K, Takita J, Shimadzu M, Matsuyama T, Ashida A, Igarashi T (2014) Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe/USA: genetic and clinical studies of 86 unrelated patients with low-molecular-weight proteinuria. Nephrol Dial Transplant 29:376–84. doi:10.1093/ndt/gft394

    Article  CAS  PubMed  Google Scholar 

  40. Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K (2006) IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3 cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A 103:9542–7. doi:10.1073/pnas.0602250103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith AJ, Lippiat JD (2010) Direct endosomal acidification by the outwardly rectifying CLC-5 Cl/H+ exchanger. J Physiol 588:2033–45. doi:10.1113/jphysiol.2010.188540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith AJ, Reed AA, Loh NY, Thakker RV, Lippiat JD (2009) Characterization of Dent’s disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. Am J Physiol Renal Physiol 296:F390–7. doi:10.1152/ajprenal.90526.2008

    Article  CAS  PubMed  Google Scholar 

  43. Sonawane ND, Thiagarajah JR, Verkman AS (2002) Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator: evidence for chloride accumulation during acidification. J Biol Chem 277:5506–13. doi:10.1074/jbc.M110818200

    Article  CAS  PubMed  Google Scholar 

  44. Stauber T, Jentsch TJ (2013) Chloride in vesicular trafficking and function. Annu Rev Physiol 75:453–77. doi:10.1146/annurev-physiol-030212-183702

    Article  CAS  PubMed  Google Scholar 

  45. Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2:1701–44. doi:10.1002/cphy.c110038

    PubMed  Google Scholar 

  46. Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–7

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki M, Vaisbich MH, Yamada H, Horita S, Li Y, Sekine T, Moriyama N, Igarashi T, Endo Y, Cardoso TP, de Sa LC, Koch VH, Seki G, Fujita T (2008) Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis. Pflugers Arch 455:583–93. doi:10.1007/s00424-007-0319-y

    Article  CAS  PubMed  Google Scholar 

  48. Thakker RV (2000) Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int 57:787–93. doi:10.1046/j.1523-1755.2000.00916.x

    Article  CAS  PubMed  Google Scholar 

  49. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–45

    Article  CAS  PubMed  Google Scholar 

  50. Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ (2010) Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Science 328:1401–3. doi:10.1126/science.1188072

    Article  CAS  PubMed  Google Scholar 

  51. Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–93

    CAS  PubMed  Google Scholar 

  52. Wu F, Roche P, Christie PT, Loh NY, Reed AA, Esnouf RM, Thakker RV (2003) Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship. Kidney Int 63:1426–32. doi:10.1046/j.1523-1755.2003.00859.x

    Article  CAS  PubMed  Google Scholar 

  53. Yamazaki O, Yamada H, Suzuki M, Horita S, Shirai A, Nakamura M, Satoh N, Fujita T, Seki G (2013) Identification of dominant negative effect of L522P mutation in the electrogenic Na+-HCO3 cotransporter NBCe1. Pflugers Arch 465:1281–91. doi:10.1007/s00424-013-1277-1

    Article  CAS  PubMed  Google Scholar 

  54. Yamazaki O, Yamada H, Suzuki M, Horita S, Shirai A, Nakamura M, Seki G, Fujita T (2011) Functional characterization of nonsynonymous single nucleotide polymorphisms in the electrogenic Na+-HCO3 cotransporter NBCe1A. Pflugers Arch 461:249–59. doi:10.1007/s00424-010-0918-x

    Article  CAS  PubMed  Google Scholar 

  55. Zifarelli G, De Stefano S, Zanardi I, Pusch M (2012) On the mechanism of gating charge movement of ClC-5, a human Cl/H+ antiporter. Biophys J 102:2060–9. doi:10.1016/j.bpj.2012.03.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zifarelli G, Pusch M (2009) Conversion of the 2 Cl/1 H+ antiporter ClC-5 in a NO3 /H+ antiporter by a single point mutation. EMBO J 28:175–82. doi:10.1038/emboj.2008.284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334:678–83. doi:10.1126/science.1207056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Horita.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Daisuke Yamamoto deceased.

Parts of this paper were taken from the thesis written in English by Nobuhiko Satoh. The title of the thesis, which is in Japanese, is as follows: “CLC-5の2Cl/H交換輸送機能はV-ATPaseを介する効率的エンドゾーム酸性化に必要である”. The summary (in Japanese) of the thesis is accessible at http://repository.dl.itc.u-tokyo.ac.jp/index_e.html.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, N., Yamada, H., Yamazaki, O. et al. A pure chloride channel mutant of CLC-5 causes Dent’s disease via insufficient V-ATPase activation. Pflugers Arch - Eur J Physiol 468, 1183–1196 (2016). https://doi.org/10.1007/s00424-016-1808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1808-7

Keywords

Navigation