Skip to main content

Advertisement

Log in

TASK-2 K2P K+ channel: thoughts about gating and its fitness to physiological function

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K+ channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits. TASK-2 takes part in regulatory adjustments and is a mediator in the chemoreception process in neurons of the retrotrapezoid nucleus where its pHi sensitivity could be important in regulating excitability and therefore signalling of the O2/CO2 status. Extracellular pH increases brought about by HCO3 efflux from proximal tubule epithelial cells have been proposed to couple to TASK-2 activation to maintain electrochemical gradients favourable to HCO3 reabsorption. We demonstrate that, as suspected previously, TASK-2 is expressed at the basolateral membrane of the same proximal tubule cells that express apical membrane Na+-H+-exchanger NHE-3 and basolateral membrane Na+-HCO3 cotransporter NBCe1-A, the main components of the HCO3 transport machinery. We also discuss critically the mechanism by which TASK-2 is modulated and impacts the process of HCO3 reclaim by the proximal tubule epithelium, concluding that more than a mere shift in extracellular pH is probably involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. At pHo 7.4: [HCO3 ]i 24 mM, [HCO3 ]o 24 mM, [Na+]i 20 mM, [Na+]o 140 mM, Em −45 mV; ΔG for the outward movement of ions through the NBCe1-A for a stoichiometry of 1:3 is −3,669 J/mol. At pHo 8.0: [HCO3 ]i 24 mM, [HCO3 ]o 100 mM, [Na+]i 20 mM, [Na+]o 140 mM, Em −45 mV; ΔG =7,364 J/mol.

References

  1. Añazco C, Peña-Münzenmayer G, Araya C, Cid LP, Sepúlveda FV, Niemeyer MI (2013) G protein modulation of K2P potassium channel TASK-2: a role of basic residues in the C-terminus domain. Pflugers Arch 465:1715–1726

    Article  PubMed  Google Scholar 

  2. Armstrong CM (2003) Voltage-gated K channels. Sci STKE 2003:re10

  3. Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122:177–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ben-Abu Y, Zhou Y, Zilberberg N, Yifrach O (2009) Inverse coupling in leak and voltage-activated K+ channel gates underlies distinct roles in electrical signaling. Nat Struct Mol Biol 16:71–79

    Article  CAS  PubMed  Google Scholar 

  5. Boron WF (2006) Acid–base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382

    Article  CAS  PubMed  Google Scholar 

  6. Brohawn SG, del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci U S A 109:5499–5504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Choi KL, Aldrich RW, Yellen G (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A 88:5092–5095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cid LP, Roa-Rojas HA, Niemeyer MI, González W, Araki M, Araki K, Sepúlveda FV (2013) TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions. Front Physiol 4:doi 10.3389/fphys.2013.00198

  10. Claiborne JB, Heisler N (1986) Acid–base regulation and ion transfers in the carp (Cyprinus carpio): pH compensation during graded long- and short-term environmental hypercapnia, and the effect of bicarbonate infusion. J Exp Biol 126:41–61

    CAS  PubMed  Google Scholar 

  11. Cohen A, Ben-Abu Y, Hen S, Zilberberg N (2008) A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J Biol Chem 283:19448–19455

    Article  CAS  PubMed  Google Scholar 

  12. Decher N, Maier M, Dittrich W, Gassenhuber J, Bruggemann A, Busch AE, Steinmeyer K (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two- pore domain potassium channel family. FEBS Lett 492:84–89

    Article  CAS  PubMed  Google Scholar 

  13. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  14. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  16. Gerstin KM, Gong DH, Abdallah M, Winegar BD, Eger EI, Gray AT (2003) Mutation of KCNK5 or Kir3.2 potassium channels in mice does not change minimum alveolar anesthetic concentration. Anesth Analg 96:1345–1349

    Article  CAS  PubMed  Google Scholar 

  17. Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet-Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J (2010) Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A 107:2325–2330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M, Lesage F (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K+ channels. Biochem Biophys Res Commun 282:249–256

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  CAS  PubMed  Google Scholar 

  20. González W, Zúñiga L, Cid LP, Arévalo B, Niemeyer MI, Sepúlveda FV (2013) An extracellular ion pathway plays a central role in the cooperative gating of a K2P K+ channel by extracellular pH. J Biol Chem 288:5984–5991

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hoffmann EK, Pedersen SF (2011) Cell volume homeostatic mechanisms: effectors and signalling pathways. Acta Physiol (Oxf) 202:465–485

    Article  CAS  Google Scholar 

  22. Hoshi T, Zagotta WN, Aldrich RW (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7:547–556

    Article  CAS  PubMed  Google Scholar 

  23. Hougaard C, Niemeyer MI, Hoffmann EK, Sepúlveda FV (2000) K+ current activated by leukotriene D4 or osmotic swelling of Ehrlich ascites tumour cells. Pflugers Arch 440:283–294

    CAS  PubMed  Google Scholar 

  24. Ishimatsu A, Iwama GK, Bentley DB, Heisler N (1992) Contribution of the secondary circulatory system to acid–base regulation during hypercapnia in rainbow trout (Onchrryncus mykiss). J Exp Biol 170:43–56

    Google Scholar 

  25. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  26. Kang D, Kim D (2004) Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun 315:836–844

    Article  CAS  PubMed  Google Scholar 

  27. Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem 275:9340–9347

    Article  CAS  PubMed  Google Scholar 

  28. Kirkegaard SS, Lambert IH, Gammeltoft S, Hoffmann EK (2010) Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation. Am J Physiol Cell Physiol 299:C844–C853

    Article  CAS  PubMed  Google Scholar 

  29. Kiss L, LoTurco J, Korn SJ (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophys J 76:253–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. L’Hoste S, Barriere H, Belfodil R, Rubera I, Duranton C, Tauc M, Poujeol C, Barhanin J, Poujeol P (2007) Extracellular pH alkalinization by Cl/HCO3 exchangeris crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney. Am J Physiol Renal Physiol 292:F628–F638

    Article  PubMed  Google Scholar 

  31. L’Hoste S, Poet M, Duranton C, Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Barhanin J, Poujeol P (2007) Role of TASK2 in the control of apoptotic volume decrease in proximal kidney cells. J Biol Chem 282:36692–36703

    Article  PubMed  Google Scholar 

  32. Lambert IH (1987) Effect of arachidonic acid, fatty acids, prostaglandins, and leukotrienes on volume regulation in Ehrlich ascites tumor cells. J Membr Biol 98:207–221

    Article  CAS  PubMed  Google Scholar 

  33. Lesage F, Barhanin J (2011) Molecular physiology of pH-sensitive background K2P channels. Physiology 26:424–437

    Article  CAS  PubMed  Google Scholar 

  34. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol 279:F793–F801

    CAS  Google Scholar 

  36. Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M (1996) Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 15:6400–6407

    PubMed Central  CAS  PubMed  Google Scholar 

  37. López-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept Channels 1:61–71

    PubMed  Google Scholar 

  38. Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 47:209–256

    Article  CAS  PubMed  Google Scholar 

  39. Ma L, Zhang X, Zhou M, Chen H (2012) Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 287:37145–37153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436

    Article  CAS  PubMed  Google Scholar 

  41. Mölich A, Heisler N (2005) Determination of pH by microfluorometry: intracellular and interstitial pH regulation in developing early-stage fish embryos (Danio rerio). J Exp Biol 208:4137–4149

    Article  PubMed  Google Scholar 

  42. Niemeyer MI, Cid LP, Barros LF, Sepúlveda FV (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    Article  CAS  PubMed  Google Scholar 

  43. Niemeyer MI, Cid LP, Peña-Münzenmayer G, Sepúlveda FV (2010) Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem 285:16467–16475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV (2006) Gating of two-pore domain K+ channels by extracellular pH. Biochem Soc Trans 34:903–906

    Article  Google Scholar 

  45. Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104:666–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Niemeyer MI, Stutzin A, Sepúlveda FV (2002) A voltage-independent K+ conductance activated by cell swelling in Ehrlich cells is modulated by a G-protein-mediated process. Biochim Biophys Acta 1562:1–5

    Article  CAS  PubMed  Google Scholar 

  47. Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP (2014) Zebrafish and mouse TASK-2 K+ channels are inhibited by increased CO2 and intracellular acidification. Pflugers Arch 466:1317–1327

    Article  PubMed  Google Scholar 

  48. Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Erhlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T (2011) The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–3619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pushkin A, Kurtz I (2006) SLC4 base (HCO3 , CO3 2−) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 290:F580–F599

    Article  CAS  PubMed  Google Scholar 

  50. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rajan S, Wischmeyer E, Liu GX, Preisig-Muller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore-domain acid-sensitive K+ channel: an extracellular histidine as pH sensor. J Biol Chem 275:16650–16657

    Article  CAS  PubMed  Google Scholar 

  52. Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273:30863–30869

    Article  CAS  PubMed  Google Scholar 

  53. Ruminot I, Gutiérrez R, Peña-Münzenmayer G, Añazco C, Sotelo-Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31:14264–14271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sepúlveda FV, Cid LP, Niemeyer MI (2013) TASK-2 K+ channel function in epithelial transport and chemosensing: physiological insights from mutagenesis. Proc Physiol Soc 30:SA01

    Google Scholar 

  55. Sepúlveda FV, Cid LP, Teulon J, Niemeyer MI (2014) Molecular aspects of structure, gating and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev (In press)

  56. Skelton LA, Boron WF, Zhou Y (2010) Acid–base transport by the renal proximal tubule. J Nephrol 23(Suppl 16):S4–S18

    PubMed  Google Scholar 

  57. Taniwaki T, Haruna K, Nakamura H, Sekimoto T, Oike Y, Imaizumi T, Saito F, Muta M, Soejima Y, Utoh A, Nakagata N, Araki M, Yamamura K, Araki K (2005) Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette. Dev Growth Differ 47:163–172

    Article  CAS  PubMed  Google Scholar 

  58. Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  59. Wang S, Benamer N, Zanella S, Kumar NN, Shi Y, Bevengut M, Penton D, Guyenet PG, Lesage F, Gestreau C, Barhanin J, Bayliss DA (2013) TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. J Neurosci 33:16033–16044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 101:8215–8220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhou Y, Boron WF (2008) Role of endogenously secreted angiotensin II in the CO2-induced stimulation of HCO3 reabsorption by renal proximal tubules. Am J Physiol Renal Physiol 294:F245–F252

    Article  CAS  PubMed  Google Scholar 

  62. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43–48

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO3 and solute reabsorption are acutely regulated not by pH but by basolateral HCO3 and CO2. Proc Natl Acad Sci U S A 102:3875–3880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhu Q, Shao XM, Kao L, Azimov R, Weinstein AM, Newman D, Liu W, Kurtz I (2013) Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis. Am J Physiol Cell Physiol 305:C392–C405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Zúñiga L, Márquez V, González-Nilo FD, Chipot C, Cid LP, Sepúlveda FV, Niemeyer MI (2011) Gating of a pH-sensitive K2P potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter. PLoS One 6:e16141

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is funded by FONDECYT grant 1110774. The Centro de Estudios Científicos (CECs) is funded by the Centres of Excellence Base Financing Programme of Conicyt. We are grateful to Drs. Masatake Araki and Kimi Araki from Kumamoto University, Japan for providing the TASK-2 KO mice, and to Dr. Ashley M. Toye from the University of Bristol, UK, for providing the NBCe1-A clone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pablo Cid.

Additional information

Karen I. López-Cayuqueo and Gaspar Peña-Münzenmayer contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Cayuqueo, K.I., Peña-Münzenmayer, G., Niemeyer, M.I. et al. TASK-2 K2P K+ channel: thoughts about gating and its fitness to physiological function. Pflugers Arch - Eur J Physiol 467, 1043–1053 (2015). https://doi.org/10.1007/s00424-014-1627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1627-7

Keywords

Navigation