Skip to main content
Log in

Non-channel mechanosensors working at focal adhesion-stress fiber complex

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mechanosensitive ion channels (MSCs) have long been the only established molecular class of cell mechanosensors; however, in the last decade, a variety of non-channel type mechanosensor molecules have been identified. Many of them are focal adhesion-associated proteins that include integrin, talin, and actin. Mechanosensors must be non-soluble molecules firmly interacting with relatively rigid cellular structures such as membranes (in terms of lateral stiffness), cytoskeletons, and adhesion structures. The partner of MSCs is the membrane in which MSC proteins efficiently transduce changes in the membrane tension into conformational changes that lead to channel opening. By contrast, the integrin, talin, and actin filament form a linear complex of which both ends are typically anchored to the extracellular matrices via integrins. Upon cell deformation by forces, this structure turns out to be a portion that efficiently transduces the generated stress into conformational changes of composite molecules, leading to the activation of integrin (catch bond with extracellular matrices) and talin (unfolding to induce vinculin bindings). Importantly, this structure also serves as an “active” mechanosensor to detect substrate rigidity by pulling the substrate with contraction of actin stress fibers (SFs), which may induce talin unfolding and an activation of MSCs in the vicinity of integrins. A recent study demonstrates that the actin filament acts as a mechanosensor with unique characteristics; the filament behaves as a negative tension sensor in which increased torsional fluctuations by tension decrease accelerate ADF/cofilin binding, leading to filament disruption. Here, we review the latest progress in the study of those non-channel mechanosensors and discuss their activation mechanisms and physiological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AJ:

Adherens junction

ECM:

Extracellular matrix

FA:

Focal adhesion

HUVEC:

Human umbilical vein endothelial cell

MSC:

Mechanosensitive ion channel

MSCCa :

Ca2+-permeable mechanosensitive ion channel

VBS:

Vinculin-binding site

SF:

Stress fiber

References

  1. Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277:93–99. doi:10.1006/bbrc.2000.3636

  2. Aratyn-Schaus Y, Gardel ML (2010) Transient frictional slip between integrin and the ECM in focal adhesions under myosin II tension. Curr Biol 20:1145–1153. doi:10.1016/j.cub.2010.05.049

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472. doi:10.1038/35074532

    CAS  PubMed  Google Scholar 

  4. Baneyx G, Baugh L, Vogel V (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci U S A 99:5139–5143. doi:10.1073/pnas.072650799

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Brown CM, Hebert B, Kolin DL, Zareno J, Whitmore L, Horwitz AR, Wiseman PW (2006) Probing the integrin-actin linkage using high-resolution protein velocity mapping. J Cell Sci 119:5204–5214. doi:10.1242/jcs.03321

    CAS  PubMed  Google Scholar 

  6. Burridge K, Wittchen ES (2013) The tension mounts: stress fibers as force-generating mechanotransducers. J Cell Biol 200:9–19. doi:10.1083/jcb.201210090

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748. doi:10.1146/annurev.biochem.72.121801.161542

    CAS  PubMed  Google Scholar 

  8. Butler B, Gao C, Mersich AT, Blystone SD (2006) Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr Biol 16:242–251. doi:10.1016/j.cub.2005.12.033

    CAS  PubMed  Google Scholar 

  9. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428. doi:10.1126/science.276.5317.1425

    CAS  PubMed  Google Scholar 

  10. Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6:275–302. doi:10.1146/annurev.bioeng.6.040803.140040

    CAS  PubMed  Google Scholar 

  11. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR (2008) Actin and a-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10:1039–1050. doi:10.1038/ncb1763

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48. doi:10.1016/S0092-8674(00)81856-5

    CAS  PubMed  Google Scholar 

  13. Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415. doi:10.1083/jcb.133.6.1403

    CAS  PubMed  Google Scholar 

  14. Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EHK (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–1679. doi:10.1242/jcs.042986

    CAS  PubMed  Google Scholar 

  15. Cramer LP, Siebert M, Mitchison TJ (1997) Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J Cell Biol 136:1287–1305. doi:10.1083/jcb.136.6.1287

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Critchley DR (2009) Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38:235–254. doi:10.1146/annurev.biophys.050708.133744

    CAS  PubMed  Google Scholar 

  17. De La Cruz EM, Sept D (2010) The kinetics of cooperative cofilin binding reveals two states of the cofilin-actin filament. Biophys J 98:1893–1901. doi:10.1016/j.bpj.2010.01.023

    Google Scholar 

  18. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641. doi:10.1126/science.1162912

    PubMed  Google Scholar 

  19. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76:2307–2316. doi:10.1016/S0006-3495(99)77386-8

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi:10.1126/science.1116995

    CAS  PubMed  Google Scholar 

  21. Drees B, Friederich E, Fradelizi J, Louvard D, Beckerle MC, Golsteyn RM (2000) Characterization of the interaction between zyxin and member of the Ena/vasodilator-stimulated phosphoprotein family of proteins. J Biol Chem 275:22503–22511. doi:10.1074/jbc.M001698200

    CAS  PubMed  Google Scholar 

  22. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319. doi:10.1038/nrm3112

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Dumbauld DW, Lee TT, Singh A, Scrimgeour J, Gersbach CA, Zamir EA, Fu J, Chen CS, Curtis JE, Craig SW, García AJ (2013) How vinculin regulates force transmission. Proc Natl Acad Sci U S A 110:9788–9793. doi:10.1073/pnas.1216209110

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. doi:10.1038/nature10137

    CAS  PubMed  Google Scholar 

  25. Dyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118:369–379. doi:10.1242/jcs.01590

    Google Scholar 

  26. Echarri A, Muriel O, Pavon DM, Azegrouz H, Escolar F, Terron MC, Sanchez-Cabo F, Martinez F, Montoya MC, Llorca O, Del Pozo MA (2012) Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci 125:3097–3113. doi:10.1242/jcs.090134

    CAS  PubMed  Google Scholar 

  27. Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478:260–263. doi:10.1038/nature10430

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628. doi:10.1016/S0006-3495(04)74140-5

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Fillingham I, Gingras AR, Papagrigoriou E, Patel B, Emsley J, Critchley DR, Roberts GCK, Barsukov IL (2005) A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13:65–74. doi:10.1016/j.str.2004.11.006

    CAS  PubMed  Google Scholar 

  30. Fournier MF, Sauser R, Ambrosi D, Meister JJ, Verkhovsky AB (2010) Force transmission in migrating cells. J Cell Biol 188:287–297. doi:10.1083/jcb.200906139

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls a5b1 function. Science 323:642–644. doi:10.1126/science.1168441

    CAS  PubMed  Google Scholar 

  32. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705. doi:10.1083/jcb.200204153

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Galkin VE, Orlova A, Egelman EH (2012) Actin filaments as tension sensors. Curr Biol 22:R96–R101. doi:10.1016/j.cub.2011.12.010

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Galkin VE, Orlova A, Lukoyanova N, Wriggers W, Egelman EH (2001) Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J Cell Biol 153:75–86. doi:10.1083/jcb.153.1.75

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Gautel M (2011) Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 462:119–134. doi:10.1007/s00424-011-0946-1

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Gee EP, Ingber DE, Stultz CM (2008) Fibronectin unfolding revisited: modeling cell traction-mediated unfolding of the tenth type-III repeat. PLoS One 3:e2373. doi:10.1371/journal.pone.0002373

    PubMed Central  PubMed  Google Scholar 

  37. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33. doi:10.1038/nrm2593

    CAS  PubMed  Google Scholar 

  38. Giannone G, Jiang G, Sutton DH, Critchley DR, Sheetz MP (2003) Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163:409–419. doi:10.1083/jcb.200302001

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Giannone G, Mège RM, Thoumine O (2009) Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19:475–486. doi:10.1016/j.tcb.2009.07.001

    CAS  PubMed  Google Scholar 

  40. Gingras AR, Ziegler WH, Frank R, Barsukov IL, Roberts GCK, Critchley DR, Emsley J (2005) Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J Biol Chem 280:37217–37224. doi:10.1074/jbc.M508060200

    CAS  PubMed  Google Scholar 

  41. Glogauer M, Arora P, Chou D, Janmey PA, Downey GP, McCulloch CAG (1998) The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273:1689–1698

    CAS  PubMed  Google Scholar 

  42. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266. doi:10.1038/nature09198

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gupton SL, Eisenmann K, Alberts AS, Waterman-Storer CM (2007) mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J Cell Sci 120:3475–3487. doi:10.1242/jcs.006049

    CAS  PubMed  Google Scholar 

  44. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179. doi:10.1126/science.6987736

    CAS  PubMed  Google Scholar 

  45. Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503. doi:10.1242/jcs.022053

    CAS  PubMed  Google Scholar 

  46. Hayakawa K, Tatsumi H, Sokabe M (2011) Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol 195:721–727. doi:10.1083/jcb.201102039

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004) Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303:2007–2010. doi:10.1126/science.1093923

    CAS  PubMed  Google Scholar 

  48. Hirata H, Tatsumi H, Lim CT, Sokabe M (2014) Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Am J Physiol Cell Physiol 306:C607–C620. doi:10.1152/ajpcell.00122.2013

    CAS  PubMed  Google Scholar 

  49. Hirata H, Tatsumi H, Sokabe M (2007) Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim Biophys Acta 1770:1115–1127. doi:10.1016/j.bbagen.2007.03.010

    CAS  PubMed  Google Scholar 

  50. Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121:2795–2804. doi:10.1242/jcs.030320

    CAS  PubMed  Google Scholar 

  51. Hirata H, Tatsumi H, Sokabe M (2008) Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures. Commun Integr Biol 1:192–195. doi:10.4161/cib.1.2.7001

    PubMed Central  PubMed  Google Scholar 

  52. Hocking DC, Sottile J, McKeown-Longo PJ (1994) Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J Biol Chem 269:19183–19187

    CAS  PubMed  Google Scholar 

  53. Hoffman LM, Jensen CC, Chaturvedi A, Yoshigi M, Beckerle MC (2012) Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol Biol Cell 23:1846–1859. doi:10.1091/mbc.E11-12-1057

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hoffman LM, Jensen CC, Kloeker S, Wang CLA, Yoshigi M, Beckerle MC (2006) Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J Cell Biol 172:771–782. doi:10.1083/jcb.200512115

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hotulainen P, Lappalainen P (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173:383–394. doi:10.1083/jcb.200511093

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115. doi:10.1126/science.1135085

    CAS  PubMed  Google Scholar 

  57. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. doi:10.1016/S0092-8674(02)00971-6

    CAS  PubMed  Google Scholar 

  58. Hytönen VP, Vogel V (2008) How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput Biol 4:e24. doi:10.1371/journal.pcbi.0040024

    PubMed Central  PubMed  Google Scholar 

  59. Jain N, Iyer KV, Kumar A, Shivashankar GV (2013) Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci U S A 110:11349–11354. doi:10.1073/pnas.1300801110

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Jégou A, Carlier MF, Romet-Lemonne G (2013) Formin mDia1 senses and generates mechanical forces on actin filaments. Nat Commun 4:1883. doi:10.1038/ncomms2888

    PubMed  Google Scholar 

  61. Jiang G, Giannone G, Critchley DR, Fukumoto E, Sheetz MP (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337. doi:10.1038/nature01805

    CAS  PubMed  Google Scholar 

  62. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584. doi:10.1038/nature09621

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Katoh K, Kano Y, Amano M, Kaibuchi K, Fujiwara K (2001) Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am J Physiol Cell Physiol 280:C1669–C1679

    CAS  PubMed  Google Scholar 

  64. Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A 102:15895–15900. doi:10.1073/pnas.0506041102

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Kawakami K, Tatsumi H, Sokabe M (2001) Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy. J Cell Sci 114:3125–3135

    CAS  PubMed  Google Scholar 

  66. Kim DH, Provenzano PP, Smith CL, Levchenko A (2012) Matrix nanotopography as a regulator of cell function. J Cell Biol 197:351–360. doi:10.1083/jcb.201108062

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kiyoshima D, Kawakami K, Hayakawa K, Tatsumi H, Sokabe M (2011) Force- and Ca(2) (+)-dependent internalization of integrins in cultured endothelial cells. J Cell Sci 124:3859–3870. doi:10.1242/jcs.088559

    CAS  PubMed  Google Scholar 

  68. Kobayashi T, Sokabe M (2010) Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol 22:669–676. doi:10.1016/j.ceb.2010.08.023

    CAS  PubMed  Google Scholar 

  69. Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102:1400–1411. doi:10.1083/jcb.102.4.1400

    CAS  PubMed  Google Scholar 

  70. Kong F, García AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284. doi:10.1083/jcb.200810002

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Kong F, Li Z, Parks WM, Dumbauld DW, García AJ, Mould AP, Humphries MJ, Zhu C (2013) Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell 49:1060–1068. doi:10.1016/j.molcel.2013.01.015

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kovar DR, Pollard TD (2004) Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci U S A 101:14725–14730. doi:10.1073/pnas.0405902101

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kozlov M, Bershadsky AD (2004) Processive capping by formin suggests a force-driven mechanism of actin polymerization. J Cell Biol 167:1011–1017. doi:10.1083/jcb.200410017

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kraning-Rush CM, Reinhart-King CA (2012) Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adhes Migr 6:274–279. doi:10.4161/cam.21076

    Google Scholar 

  75. Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813. doi:10.1038/325811a0

    CAS  PubMed  Google Scholar 

  76. Lawson MA, Maxfield FR (1995) Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377:75–79. doi:10.1038/377075a0

    CAS  PubMed  Google Scholar 

  77. Lee IJ, Coffman VC, Wu JQ (2012) Contractile-ring assembly in fission yeast cytokinesis: recent advances and new perspectives. Cytoskeleton 69:751–763. doi:10.1002/cm.21052

    CAS  PubMed  Google Scholar 

  78. Lee J, Ishuhara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–386. doi:10.1038/22578

    CAS  PubMed  Google Scholar 

  79. Lee SE, Kamm RD, Mofrad MRK (2007) Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J Biomech 40:2096–2106. doi:10.1016/j.jbiomech.2007.04.006

    PubMed  Google Scholar 

  80. Lele TP, Pendse J, Kumar S, Salanga M, Karavitis J, Ingber DE (2006) Mechanical forces alter zyxin unbinding kinetics within focal adhesions in living cells. J Cell Physiol 207:187–194. doi:10.1002/jcp.20550

    CAS  PubMed  Google Scholar 

  81. Lin CH, Forscher P (1995) Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14:763–771. doi:10.1016/0896-6273(95)90220-1

    CAS  PubMed  Google Scholar 

  82. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107:9944–9949. doi:10.1073/pnas.0914547107

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152. doi:10.1016/S0006-3495(00)76279-5

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Margadant F, Chew LL, Hu X, Yu H, Bate N, Zhang X, Sheetz M (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol 9:e1001223. doi:10.1371/journal.pbio.1001223

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193. doi:10.1038/nature01605

    CAS  PubMed  Google Scholar 

  86. Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460. doi:10.1242/jcs.01232

    CAS  PubMed  Google Scholar 

  87. Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T (2011) Effect of tensile force on the mechanical behaviors of actin filaments. J Biomech 44:1776–1781. doi:10.1016/j.jbiomech.2011.04.012

    PubMed  Google Scholar 

  88. McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel JL, Blanchoin L, Reisler E, De La Cruz EM (2011) Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 101:151–159. doi:10.1016/j.bpj.2011.05.049

    CAS  PubMed Central  PubMed  Google Scholar 

  89. McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138:771–781. doi:10.1083/jcb.138.4.771

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226. doi:10.1038/ncb1367

    CAS  PubMed  Google Scholar 

  91. Menon S, Beningo KA (2011) Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS One 6:e17277. doi:10.1371/journal.pone.0017277

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N (2011) Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science 331:80–83. doi:10.1126/science.1197692

    CAS  PubMed  Google Scholar 

  93. Munevar S, Wang YL, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117:85–92. doi:10.1242/jcs.00795

    CAS  PubMed  Google Scholar 

  94. Naruse K, Sokabe M (1993) Involvement of stretch activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264:C1037–C1044

    CAS  PubMed  Google Scholar 

  95. Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538

    CAS  PubMed  Google Scholar 

  96. Nishida E, Maekawa S, Sakai H (1984) Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23:5307–5313. doi:10.1021/bi00317a032

    CAS  PubMed  Google Scholar 

  97. Oakes PW, Beckham Y, Stricker J, Gardel ML (2012) Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J Cell Biol 196:363–374. doi:10.1083/jcb.201107042

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ohashi K, Fujiwara S, Watanabe T, Kondo H, Kiuchi T, Sato M, Mizuno K (2011) LIM kinase has a dual role in regulating lamellipodium extension by decelerating the rate of actin retrograde flow and the rate of actin polymerization. J Biol Chem 286:36340–51. doi:10.1074/jbc.M111.259135

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ono S, Abe H, Obinata T (1996) Stimulus-dependent disorganization of actin filaments induced by overexpression of cofilin in C2 myoblasts. Cell Struct Funct 21:491–499. doi:10.1247/csf.21.491

    CAS  PubMed  Google Scholar 

  100. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK (2005) Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433:488–494. doi:10.1038/nature03251

    CAS  PubMed  Google Scholar 

  101. Papagrigoriou E, Gingras AR, Barsukov IL, Bate N, Fillingham IJ, Patel B, Frank R, Ziegler WH, Roberts GCK, Critchley DR, Emsley J (2004) Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J 23:2942–2951. doi:10.1038/sj.emboj.7600285

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM (2010) Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 188:877–890. doi:10.1083/jcb.200906012

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Patel B, Ginhras AR, Bobkov AA, Fujimoto LM, Zhang M, Liddington RC, Mazzeo D, Emsley J, Roberts GCK, Barsukov IL, Critchley DR (2006) The activity of the vinculin binding sites in talin is influenced by the stability of the helical bundles that make up the talin rod. J Biol Chem 281:7458–7467. doi:10.1074/jbc.M508058200

    CAS  PubMed  Google Scholar 

  104. Pelham RJ Jr, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–13665. doi:10.1073/pnas.94.25.13661

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Perbal G (2009) From ROOTS to GRAVI-1: twenty five years for understanding how plants sense gravity. Microgravity Sci Technol 21:3–10

    Google Scholar 

  106. Popp R, Hoyer J, Meyer J, Galla HJ, Gogelein H (1992) Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol 454:435–449

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Price LS, Langeslag M, ten Klooster JP, Hordijk PL, Jalink K, Collard JG (2003) Calcium signaling regulates translocation and activation of Rac. J Biol Chem 278:39413–39421. doi:10.1074/jbc.M302083200

    CAS  PubMed  Google Scholar 

  108. Puklin-Faucher E, Gao M, Schulten K, Vogel V (2006) How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J Cell Biol 175:349–360. doi:10.1083/jcb.200602071

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ressad F, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D, Carlier MF (1998) Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. Comparison plant human ADFs effect phosphorylation J Biol Chem 273:20894–20902

    CAS  Google Scholar 

  110. Riento K, Ridley AJ (2003) ROCKs: multifunctional kinases in cell behavior. Nat Rev Mol Cell Biol 4:446–456. doi:10.1038/nrm1128

    CAS  PubMed  Google Scholar 

  111. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185. doi:10.1083/jcb.153.6.1175

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier MF (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119:419–429. doi:10.1016/j.cell.2004.09.039

    CAS  PubMed  Google Scholar 

  113. Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y, Hirai H (1994) A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 13:3748–3756

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026. doi:10.1016/j.cell.2006.09.044

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Schwingel M, Bastmeyer M (2013) Force mapping during the formation and maturation of cell adhesion sites with multiple optical tweezers. PLoS One 8:e54850. doi:10.1371/journal.pone.0054850

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Shirinsky VP, Antonov AS, Birukov KG, Sobolevsky AV, Romanov YA, Kabaeva NV, Antonova GN, Smirnov VN (1989) Mechano-chemical control of human endothelium orientation and size. J Cell Biol 109:331–339. doi:10.1083/jcb.109.1.331

    CAS  PubMed  Google Scholar 

  117. Smith MA, Blankman E, Gardel ML, Luettjohann L, Waterman CM, Beckerle MC (2010) A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev Cell 19:365–376. doi:10.1016/j.devcel.2010.08.008

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Tatsumi H, Furuichi T, Nakano M, Toyota M, Hayakawa K, Sokabe M, Iida H (2014) Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants. Plant Biol (Stuttg) 16:18–22. doi:10.1111/plb.12095

    Google Scholar 

  119. Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV, Zemljic-Harpf A, Ross RS, Davidson MW, Danuser G, Campbell SL, Waterman CM (2013) Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J Cell Biol 202:163–177. doi:10.1083/jcb.201303129

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Tsaturyan AK, Bershitsky SY, Koubassova NA, Fernandez M, Narayanan T, Ferenczi MA (2011) The fraction of myosin motors that participate in isometric contraction of rabbit muscle fibers at near-physiological temperature. Biophys J 101:404–410. doi:10.1016/j.bpj.2011.06.008

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Tsuda Y, Yasutake H, Ishijima A, Yanagida T (1996) Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci U S A 93:12937–12942

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Uemura A, Nguyen TN, Steele AN, Yamada S (2011) The LIM domain of zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophys J 101:1069–1075. doi:10.1016/j.bpj.2011.08.001

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Uribe R, Jay D (2009) A review of actin binding proteins: new perspectives. Mol Biol Rep 36:121–125. doi:10.1007/s11033-007-9159-2

    CAS  PubMed  Google Scholar 

  124. Uyeda TQ, Iwadate Y, Umeki N, Nagasaki A, Yumura S (2011) Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One 6:e26200. doi:10.1371/journal.pone.0026200

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Wang YL (2007) Flux at focal adhesions: slippage clutch, mechanical gauge, or signal depot. Sci STKE 2007:pe10. doi: 10.1126/stke.3772007pe10

  126. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127. doi:10.1126/science.7684161

    CAS  PubMed  Google Scholar 

  127. Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279:C1345–C1350

    CAS  PubMed  Google Scholar 

  128. Wechezak AR, Viggers RF, Sauvage LR (1985) Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab Investig 53:639–647

    CAS  PubMed  Google Scholar 

  129. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905. doi:10.1038/nature07577

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wiggan O, Shaw AE, DeLuca JG, Bamburg JR (2012) ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev Cell 22:530–543. doi:10.1016/j.devcel.2011.12.026

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Wong DY, Sept D (2011) The interaction of cofilin with the actin filament. J Mol Biol 413:97–105. doi:10.1016/j.jmb.2011.08.039

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Xu W, Coll JL, Adamson ED (1998) Rescue of the mutant phenotype by reexpression of full-length vinculin in null F9 cells; effects on cell locomotion by domain deleted vinculin. J Cell Sci 111:1535–1544

    CAS  PubMed  Google Scholar 

  133. Yago T, Wu J, Wey CD, Klopocki AG, Zhu C, McEver RP (2004) Catch bonds govern adhesion through L-selectin at threshold shear. J Cell Biol 166:913–923. doi:10.1083/jcb.200403144

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Yakovenko O, Sharma S, Forero M, Tchesnokova V, Aprikian P, Kidd B, Mach A, Vogel V, Sokurenko E, Thomas WE (2008) FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J Biol Chem 283:11596–11605. doi:10.1074/jbc.M707815200

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Yao X, Kwan H, Huang Y (2001) Stretch-sensitive switching among different channel sublevels of an endothelial cation channel. Biochim Biophys Acta 1511:381–390. doi:10.1016/S0005-2736(01)00300-5

    CAS  PubMed  Google Scholar 

  136. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34. doi:10.1002/cm.20041

    PubMed  Google Scholar 

  137. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) α-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542. doi:10.1038/ncb2055

    CAS  PubMed  Google Scholar 

  138. Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC (2005) Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol 171:209–215. doi:10.1083/jcb.200505018

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol doi 10:1062–1068. doi:10.1038/ncb1765

    CAS  Google Scholar 

  140. Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453–460. doi:10.1016/j.tcb.2006.07.004

    CAS  PubMed  Google Scholar 

  141. Zigmond SH, Evangelista M, Boone C, Yang C, Dar AC, Sicheri F, Forkey J, Pring M (2003) Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol 13:1820–1823. doi:10.1016/j.cub.2003.90.057

    CAS  PubMed  Google Scholar 

  142. Zimerman B, Volberg T, Geiger B (2004) Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil Cytoskeleton 58:143–159. doi:10.1002/cm.20005

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to K.H., H.T., and M.S.), a grant from the Japan Space Forum (to H.T. and M.S.), and a Seed Grant from MBI (to MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sokabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, H., Tatsumi, H., Hayakawa, K. et al. Non-channel mechanosensors working at focal adhesion-stress fiber complex. Pflugers Arch - Eur J Physiol 467, 141–155 (2015). https://doi.org/10.1007/s00424-014-1558-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1558-3

Keywords

Navigation