Skip to main content

Advertisement

Log in

Real-time quantification of intestinal perfusion and arterial versus venous occlusion using laser speckle contrast imaging in porcine model

  • Research
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Real-time intraoperative perfusion assessment may reduce anastomotic leaks. Laser speckle contrast imaging (LSCI) provides dye-free visualization of perfusion by capturing coherent laser light scatter from red blood cells and displays perfusion as a colormap. Herein, we report a novel method to precisely quantify intestinal perfusion using LSCI.

Methods

ActivSight™ is an FDA-cleared multi-modal visualization system that can detect and display perfusion via both indocyanine green imaging (ICG) and LSCI in minimally invasive surgery. An experimental prototype LSCI perfusion quantification algorithm was evaluated in porcine models. Porcine small bowel was selectively devascularized to create regions of perfused/watershed/ischemic bowel, and progressive aortic inflow/portal vein outflow clamping was performed to study arterial vs. venous ischemia. Continuous arterial pressure was monitored via femoral line.

Results

LSCI perfusion colormaps and quantification distinguished between perfused, watershed, and ischemic bowel in all vascular control settings: no vascular occlusion (p < 0.001), aortic occlusion (p < 0.001), and portal venous occlusion (p < 0.001). LSCI quantification demonstrated similar levels of ischemia induced both by states of arterial inflow and venous outflow occlusion. LSCI-quantified perfusion values correlated positively with higher mean arterial pressure and with increasing distance from ischemic bowel.

Conclusion

LSCI relative perfusion quantification may provide more objective real-time assessment of intestinal perfusion compared to conventional naked eye assessment by quantifying currently subjective gradients of bowel ischemia and identifying both arterial/venous etiologies of ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Peter CW Kim, upon reasonable request.

References

  1. Turrentine FE et al (2015) Morbidity, mortality, cost, and survival estimates of gastrointestinal anastomotic leaks. J Am Coll Surg 220(2):195–206

    Article  PubMed  Google Scholar 

  2. Agzarian J et al (2019) The cost burden of clinically significant esophageal anastomotic leaks-a steep price to pay. J Thorac Cardiovasc Surg 157(5):2086–2092

    Article  PubMed  Google Scholar 

  3. Lee SW, Gregory D, Cool CL (2020) Clinical and economic burden of colorectal and bariatric anastomotic leaks. Surg Endosc 34(10):4374–4381

    Article  PubMed  Google Scholar 

  4. Lin J et al (2021) The efficacy of intraoperative ICG fluorescence angiography on anastomotic leak after resection for colorectal cancer: a meta-analysis. Int J Colorectal Dis 36(1):27–39

    Article  CAS  PubMed  Google Scholar 

  5. Cruz RJ Jr et al (2010) Regional blood flow distribution and oxygen metabolism during mesenteric ischemia and congestion. J Surg Res 161(1):54–61

    Article  PubMed  Google Scholar 

  6. Guzmán-de la Garza FJ et al (2009) Different patterns of intestinal response to injury after arterial, venous or arteriovenous occlusion in rats. World J Gastroenterol 15(31):3901

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kimura M et al (2003) Real-time energy metabolism of intestine during arterial versus venous occlusion in the rat. J Gastroenterol 38:849–853

    Article  PubMed  Google Scholar 

  8. Quero G et al (2019) Discrimination between arterial and venous bowel ischemia by computer-assisted analysis of the fluorescent signal. Surg Endosc 33(6):1988–1997

    Article  PubMed  Google Scholar 

  9. Chandler P, Wiesel O, Sherwinter DA (2021) Fluorescence-guided surgery of the esophagus. Ann Transl Med 9(10):908–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeuchi M et al (2020) Effect of venous superdrainage on colon interposition for esophageal reconstruction. J UOEH 42(4):331–334

    Article  PubMed  Google Scholar 

  11. Tsao C-K et al (2004) Adequate venous drainage: the most critical factor for a successful free jejunal transfer. Ann Plast Surg 53(3):229–234

    Article  PubMed  Google Scholar 

  12. Ladak F et al (2019) Indocyanine green for the prevention of anastomotic leaks following esophagectomy: a meta-analysis. Surg Endosc 33(2):384–394

    Article  PubMed  Google Scholar 

  13. Nwaiwu CA et al (2023) Feasibility and comparison of laparoscopic laser speckle contrast imaging to near-infrared display of indocyanine green in intraoperative tissue blood flow/tissue perfusion in preclinical porcine models. Surg Endosc 37(2):1086–1095

    Article  PubMed  Google Scholar 

  14. Ambrus R et al (2017) Evaluation of gastric microcirculation by laser speckle contrast imaging during esophagectomy. J Am Coll Surg 225(3):395–402

    Article  PubMed  Google Scholar 

  15. Ambrus R et al (2017) A reduced gastric corpus microvascular blood flow during Ivor-Lewis esophagectomy detected by laser speckle contrast imaging technique. Scand J Gastroenterol 52(4):455–461

    Article  PubMed  Google Scholar 

  16. Briers D et al (2013) Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt 18(6):066018

    Article  PubMed  Google Scholar 

  17. Draijer M et al (2009) Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 24(4):639–651

    Article  PubMed  Google Scholar 

  18. Zheng C, Lau LW, Cha J (2018) Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed Opt Express 9(12):5962–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heeman W et al (2019) Application of laser speckle contrast imaging in laparoscopic surgery. Biomed Opt Express 10(4):2010–2019

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heeman W et al (2019) Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt 24(08):1

    Article  PubMed  Google Scholar 

  21. Davis MA, Kazmi SM, Dunn AK (2014) Imaging depth and multiple scattering in laser speckle contrast imaging. J Biomed Opt 19(8):086001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oberlin J, Dimaio E (2021) U.S. Patent No. 11,206,991: systems and methods for processing laser speckle signals. Activ Surgical: United States

  23. Ronn JH et al (2019) Laser speckle contrast imaging and quantitative fluorescence angiography for perfusion assessment. Langenbecks Arch Surg 404(4):505–515

    Article  PubMed  Google Scholar 

  24. Barberio M et al (2020) Quantitative fluorescence angiography versus hyperspectral imaging to assess bowel ischemia: a comparative study in enhanced reality. Surgery 168(1):178–184

    Article  PubMed  Google Scholar 

  25. Barberio M et al (2020) HYPerspectral Enhanced Reality (HYPER): a physiology-based surgical guidance tool. Surg Endosc 34(4):1736–1744

    Article  PubMed  Google Scholar 

  26. D’Urso A et al (2021) Computer-assisted quantification and visualization of bowel perfusion using fluorescence-based enhanced reality in left-sided colonic resections. Surg Endosc 35(8):4321–4331

    Article  PubMed  Google Scholar 

  27. Nadort A et al (2016) Quantitative blood flow velocity imaging using laser speckle flowmetry. Sci Rep 6:25258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lütken CD et al (2021) Quantification of fluorescence angiography: toward a reliable intraoperative assessment of tissue perfusion - a narrative review. Langenbeck’s Arch Surg 406(2):251–259

    Article  Google Scholar 

  29. Takeda FR et al (2021) Supercharged cervical anastomosis for esophagectomy and gastric pull-up. J Thorac Cardiovasc Surg 162(3):688-697.e3

    Article  PubMed  Google Scholar 

  30. Tsui C, Klein R, Garabrant M (2013) Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc 27(7):2253–2257

    Article  PubMed  Google Scholar 

  31. Percie Du Sert N et al (2020) The ARRIVE guidelines 20: updated guidelines for reporting animal research. PLOS Biol 18(7):e3000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaiontz C (2021) Real Statistics Resource Pack software

  33. Cruz RJ Jr et al (2004) Effects of intra-aortic balloon occlusion on intestinal perfusion, oxygen metabolism and gastric mucosal PCO2 during experimental hemorrhagic shock. Eur Surg Res 36(3):172–178

    Article  PubMed  Google Scholar 

  34. Jacquet-Lagrèze M et al (2014) A new device for continuous assessment of gut perfusion: proof of concept on a porcine model of septic shock. Crit Care 18(4):R153

    Article  PubMed  PubMed Central  Google Scholar 

  35. Diana M et al (2017) Precision real-time evaluation of bowel perfusion: accuracy of confocal endomicroscopy assessment of stoma in a controlled hemorrhagic shock model. Surg Endosc 31(2):680–691

    Article  PubMed  Google Scholar 

  36. Diana M et al (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg 102(2):e169–e176

    Article  CAS  PubMed  Google Scholar 

  37. Wada T et al (2017) ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc 31(10):4184–4193

    Article  PubMed  Google Scholar 

  38. Yukaya T et al (2015) Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy. J Am Coll Surg 221(2):e37-42

    Article  PubMed  Google Scholar 

  39. Baiocchi GL, Diana M, Boni L (2018) Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions. World J Gastroenterol 24(27):2921–2930

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holmer A et al (2018) Hyperspectral imaging in perfusion and wound diagnostics - methods and algorithms for the determination of tissue parameters. Biomed Tech (Berl) 63(5):547–556

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Robin Grandl, PhD, Activ Surgical for review and editing.

Author information

Authors and Affiliations

Authors

Contributions

• Study conception and design: Yao Z Liu, Saloni Mehrotra, Chibueze A Nwaiwu, Vasiliy E Buharin, Steven D Schwaitzberg, and Peter CW Kim. • Acquisition of data: Yao Z Liu, Saloni Mehrotra, Vasiliy E Buharin, John Oberlin, Roman Stolyarov, and Peter CW Kim. • Analysis and interpretation of data: Yao Z Liu, Saloni Mehrotra, Vasiliy E Buharin, Roman Stolyarov, and Peter CW Kim. • Drafting of the manuscript: Yao Z Liu, Saloni Mehrotra, Chibueze A Nwaiwu, and Peter CW Kim. • Critical revision of the manuscript: All authors.

Corresponding author

Correspondence to Peter C. W. Kim.

Ethics declarations

This study was funded by Activ Surgical, Inc. Authors Yao Z Liu, Saloni Mehrotra, Chibueze A Nwaiwu, Vasiliy E Buharin, John Oberlin, Roman Stolaryov, and Peter CW Kim are employees of Activ Surgical. Author Steven D Schwaitzberg is on the advisory board of Activ Surgical, Human Extensions, New View Surgical, HAI Technology, Levitra Magnetics, and Arch Therapeutics.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.Z., Mehrotra, S., Nwaiwu, C.A. et al. Real-time quantification of intestinal perfusion and arterial versus venous occlusion using laser speckle contrast imaging in porcine model. Langenbecks Arch Surg 408, 114 (2023). https://doi.org/10.1007/s00423-023-02845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00423-023-02845-0

Keywords

Navigation