Skip to main content
Log in

Nonlinearization: naturalistic stimulation and nonlinear dynamic behavior in a spider mechanoreceptor

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In a previous study, we used linear frequency response analysis to show that naturalistic stimulation of spider primary mechanosensory neurons produced different response dynamics than the commonly used Gaussian random noise. We isolated this difference to the production of action potentials from receptor potential and suggested that the different distribution of frequency components in the naturalistic signal increased the nonlinearity of action potential encoding. Here, we tested the relative contributions of first- and second-order processes to the action potential signal by measuring linear and quadratic coherence functions. Naturalistic stimulation shifted the linear coherence toward lower frequencies, while quadratic coherence was always higher than linear coherence and increased with naturalistic stimulation. In an initial attempt to separate the order of time-dependent and nonlinear processes, we fitted quadratic frequency response functions by two block-structured models consisting of a power-law filter and a static second-order nonlinearity in alternate cascade orders. The same cascade models were then fitted to the original time domain data by conventional numerical analysis algorithms, using a polynomial function as the static nonlinearity. Quadratic models with a linear filter followed by a static nonlinearity were favored over the reverse order, but with weak significance. Polynomial nonlinear functions indicated that rectification is a major nonlinearity. A complete quantitative description of sensory encoding in these primary mechanoreceptors remains elusive but clearly requires quadratic and higher nonlinear operations on the input signal to explain the sensitivity of dynamic behavior to different input signal patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barth FG (2002) A spider’s world, senses and behavior. Springer, Berlin

    Book  Google Scholar 

  • Barth FG, Höller A (1999) Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Philos Trans R Soc Lond B 354:183–192

    Article  Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata ( Araneae). Z Morph Tiere 68:343–369

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1980) Engineering applications of correlation and spectral analysis. Wiley, New York

    Google Scholar 

  • Bewick GS, Banks RW (2015) Mechanotransduction in the muscle spindle. Pflügers Arch 467:175–190

    Article  CAS  PubMed  Google Scholar 

  • Brown MC, Stein RB (1966) Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 3:175–185

    Article  CAS  PubMed  Google Scholar 

  • Catton WT (1958) Some properties of frog skin mechanoreceptors. J Physiol 141:305–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman KM, Smith RS (1963) A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature 197:699–700

    Article  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  • DiCaprio RA, Billimoria CP, Ludwar BCh (2007) Information rate and spike-timing precision of proprioceptive afferents. J Neurophysiol 98:1706–1717

    Article  PubMed  Google Scholar 

  • French AS (1980a) Phototransduction in the fly compound eye exhibits temporal resonances and a pure time delay. Nature 283:200–202

    Article  CAS  PubMed  Google Scholar 

  • French AS (1980b) Sensory transduction in an insect mechanoreceptor: linear and nonlinear properties. Biol Cybern 38:115–123

    Article  Google Scholar 

  • French AS, Butz EG (1973) Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm. Int J Control 17:529–539

    Article  Google Scholar 

  • French AS, Holden AV (1971) Frequency domain analysis of neurophysiological data. Comput Progr Biomed 1:219–234

    Article  Google Scholar 

  • French AS, Marmarelis VZ (1999) Nonlinear analysis of neuronal systems. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin, pp 627–640

    Chapter  Google Scholar 

  • French AS, Wong RKS (1977) Nonlinear analysis of sensory transduction in an insect mechanoreceptor. Biol Cybern 26:231–240

    Article  CAS  PubMed  Google Scholar 

  • French AS, Holden AV, Stein RB (1972) The estimation of the frequency response function of a mechanoreceptor. Kybernetik 11:15–23

    Article  CAS  PubMed  Google Scholar 

  • French AS, Höger U, Sekizawa S-i, Torkkeli PH (2001) Frequency response functions and information capacities of paired spider mechanoreceptor neurons. Biol Cybern 85:293–300

    Article  CAS  PubMed  Google Scholar 

  • Gettrup E (1963) Phasic stimulation of a thoracic stretch receptor. J Exp Biol 40:323–333

    Google Scholar 

  • Gorur-Shandilya S, Demir M, Long J, Clark DA, Emonet T (2017) Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. Elife 6:e27670

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern 55:135–144

    CAS  PubMed  Google Scholar 

  • Jacobs GA, Miller JP, Aldworth Z (2008) Computational mechanisms of mechanosensory processing in the cricket. J Exp Biol 211:1819–1828

    Article  PubMed  Google Scholar 

  • Juusola M, de Polavieja GG (2003) The rate of information transfer of naturalistic stimulation by graded potentials. J Gen Physiol 122:191–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Juusola M, Weckström M, Uusitalo RO, Korenberg MJ, French AS (1995) Nonlinear models of the first synapse in the light-adapted fly retina. J Neurophysiol 74:2538–2547

    Article  CAS  PubMed  Google Scholar 

  • Kelly M, Babineau D, Longtin A, Lewis JE (2008) Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs. Biol Cybern 98:479–490

    Article  PubMed  Google Scholar 

  • Kim KI (1991) On measuring the system coherency of quadratically nonlinear systems. I EEE Trans Sig Process 39:212–214

    Article  Google Scholar 

  • Kim YC, Wong WF, Powers EJ, Roth JR (1979) Extension of the coherence function to quadratic models. Proc IEEE 67:428–429

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1883) Optimization by simulated annealing. Science 220:671–680

    Article  Google Scholar 

  • Koles ZJ, Smith RS (1974) Characteristics of the sensory discharge of the muscle spindle in Xenopus laevis. Kybernetik 15:99–110

    Article  CAS  PubMed  Google Scholar 

  • Kondoh Y, Okuma J, Newland PL (1995) Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. J Neurophysiol 73:1829–1842

    Article  CAS  PubMed  Google Scholar 

  • Korenberg MJ (1990) The identification of nonlinear biological systems: Wiener kernel approaches. Ann Biomed Eng 18:629–654

    Article  CAS  PubMed  Google Scholar 

  • Korenberg MJ, French AS, Voo SKL (1988) White-noise analysis of nonlinear behavior in an insect sensory neuron: kernel and cascade approaches. Biol Cybern 58:313–320

    Article  CAS  PubMed  Google Scholar 

  • Landgren S (1952) On the excitation mechanism of the carotid baroreceptors. Acta Physiol Scand 26:1–34

    Article  CAS  PubMed  Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380:165–168

    Article  CAS  PubMed  Google Scholar 

  • Lewen GD, Bialek W, de Ruyter van Steveninck R (2001) Neural coding of naturalistic motion stimuli. Network 12:317–329

    Article  CAS  PubMed  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  • Matthews PBC, Stein RB (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes in length. J Physiol 200:723–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JP, Jacobs GA, Theunissen FE (1991) Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons. J Neurophysiol 66:1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Molina J, Schaber CF, Barth FG (2009) In search of differences between the two types of sensory cells innervating spider slit sensilla (Cupiennius salei Keys). J Comp Physiol A 195:1031–1041

    Article  CAS  Google Scholar 

  • Moss F, Pierson D, O’gorman D (1994) Stochastic resonance: tutorial and update. Int J Bifurc Chaos 4:1383–1397

    Article  Google Scholar 

  • Pfeiffer K, French AS (2015) Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor. Front Physiol 6:303

    Article  PubMed Central  PubMed  Google Scholar 

  • Poppele RE (1981) An analysis of muscle spindle behaviour using randomly applied stretches. Neuroscience 6:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1990) Numerical recipes in C. The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Pringle JW, Wilson VJ (1952) The response of a sense organ to a harmonic stimulus. J Exp Biol 29:220–234

    Google Scholar 

  • Rieke F, Bodnar DA, Bialek W (1995) Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc R Soc Lond B 262:259–265

    Article  CAS  Google Scholar 

  • Rien D, Kern R, Kurtz R (2013) Octopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow. Front Behav Neurosci 7:155

    Article  PubMed Central  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Spekreijse H, Oosting H (1970) Linearizing: a method for analysing and synthesizing nonlinear systems. Kybernetik 7:22–31

    Article  CAS  PubMed  Google Scholar 

  • Stein RB, French AS, Holden AV (1972) The frequency response, coherence and information capacity of two neural models. Biophys J 12:295–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tolhurst DJ, Tadmor Y, Chao T (1992) Amplitude spectra of natural images. Ophthalmic Physiol Opt 12:229–232

    Article  CAS  PubMed  Google Scholar 

  • Torkkeli PH, French AS (2002) Simulation of different firing patterns in paired spider mechanoreceptor neurons: the role of Na\(^{+}\) channel inactivation. J Neurophysiol 87:1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Torkkeli PH, Meisner S, Pfeiffer K, French AS (2012) GABA and glutamate receptors have different effects on excitability and are differentially regulated by calcium in spider mechanosensory neurons. Eur J Neurosci 36:3602–3614

    Article  PubMed  Google Scholar 

  • van Hateren JH (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vis Res 37:3407–3416

    Article  PubMed  Google Scholar 

  • van der Schaaf A, van Hateren JH (1996) Modelling the power spectra of natural images: statistics and information. Vis Res 36:2759–2770

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Canadian Institutes for Health Research and the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. French.

Additional information

Communicated by Jan Benda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

French, A.S., Pfeiffer, K. Nonlinearization: naturalistic stimulation and nonlinear dynamic behavior in a spider mechanoreceptor. Biol Cybern 112, 403–413 (2018). https://doi.org/10.1007/s00422-018-0763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-018-0763-0

Keywords

Navigation