Skip to main content
Log in

Exercise testing in patients with cystic fibrosis—importance of ventilatory parameters

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Background

Ventilatory parameters obtained during exercise predict survival in several chronic diseases; however, long-term changes in exercise ventilatory parameters in patients with cystic fibrosis (CF) have yet to be examined and potential differences between sexes in CF are unknown.

Purpose

We sought to examine the change in exercise ventilatory parameters over time in patients with CF and determine if the change is different between sexes.

Methods

Exercise capacity (VO2 peak) and exercise ventilatory parameters (VE/VO2 peak, VE/VCO2 peak, and VE/VCO2 slope) were determined from a maximal cardio-pulmonary test on a cycle ergometer on two visits separated by 39 ± 16 months in 20 patients with CF (10 female, 10 male).

Results

No differences between sexes were observed at visit 1 (all p > 0.05). Overall, exercise ventilatory parameters significantly (p < 0.05) deteriorated between visits, with no change (p > 0.05) in VO2 peak. Moreover, compared to males, female patients exhibited greater deteriorations in VE/VO2 peak (p = 0.001), VE/VCO2 peak (p = 0.002), and VE/VCO2 slope (p = 0.016) between visits.

Conclusions

These data in patients with CF indicate that exercise ventilatory parameters decline over time despite no change in VO2 peak, and female patients exhibit a more rapid deterioration compared to males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CF:

Cystic fibrosis

CPET:

Cardio-pulmonary exercise test

DXA:

Dual-energy X-ray absorptiometry

FeCO2 :

Fraction of expired CO2

FEV1 :

Forced expiratory volume in 1 s

FFM:

Fat-free mass

FVC:

Forced vital capacity

MVV:

Maximum voluntary ventilation

PaCO2 :

Partial pressure of arterial CO2

RR:

Respiratory rate

VCO2 :

Volume of carbon dioxide output

V D/V T :

Dead space-to-tidal volume ratio

V E :

Minute ventilation

VO2 :

Volume of oxygen consumption

V T :

Tidal volume

VT:

Ventilatory threshold

References

  • American Thoracic Society (1995) Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med 152(3):1107–1136

    Article  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027

    Article  CAS  PubMed  Google Scholar 

  • Cantin A (1995) Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151(4):939–941

    CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Earlbaum Associates 2, Hilsdale.

    Google Scholar 

  • Corey M, Levison H, Crozier D (1976) Five-to seven-year course of pulmonary function in cystic fibrosis 1–3. Am Rev Respir Dis 114(6):1085–1092

    CAS  PubMed  Google Scholar 

  • Dodge J, Lewis P, Stanton M, Wilsher J (2007) Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur Respir J 29(3):522–526

    Article  CAS  PubMed  Google Scholar 

  • Fielding J, Brantley L, Seigler N, McKie KT, Davison GW, Harris RA (2015) Oxygen uptake kinetics and exercise capacity in children with cystic fibrosis. Pediatr Pulmonol 50(7):647–654

    Article  PubMed  Google Scholar 

  • FitzSimmons SC (1993) The changing epidemiology of cystic fibrosis. J Pediatr 122(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Godfrey S, Davies C, Wozniak E, Barnes CA (1971) Cardio-respiratory response to exercise in normal children. Clin Sci 40(5):419–431

    Article  CAS  PubMed  Google Scholar 

  • Gratas-Delamarche A, Mercier J, Ramonatxo M, Dassonville J, Prefaut C (1993) Ventilatory response of prepubertal boys and adults to carbon dioxide at rest and during exercise. Eur J Appl Physiol Occup Physiol 66(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Gruet M, Troosters T, Verges S (2017) Peripheral muscle abnormalities in cystic fibrosis: etiology, clinical implications and response to therapeutic interventions. J Cystic Fibros 15(5):538–552

    Article  CAS  Google Scholar 

  • Guazzi M, De Vita S, Cardano P, Barlera S, Guazzi MD (2003) Normalization for peak oxygen uptake increases the prognostic power of the ventilatory response to exercise in patients with chronic heart failure. Am Heart J 146(3):542–548

    Article  PubMed  Google Scholar 

  • Hankinson J, Odencrantz J, Fedan K (1999) Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159:179–187

    Article  CAS  PubMed  Google Scholar 

  • Hart N, Polkey MI, Clément A, Boulé M, Moxham J, Lofaso F, Fauroux B (2002) Changes in pulmonary mechanics with increasing disease severity in children and young adults with cystic fibrosis. Am J Respir Crit Care Med 166(1):61–66

    Article  PubMed  Google Scholar 

  • Hebestreit H, Kieser S, Rüdiger S, Schenk T, Junge S, Hebestreit A, Ballmann M, Posselt H-G, Kriemler S (2006) Physical activity is independently related to aerobic capacity in cystic fibrosis. Eur Respir J 28(4):734–739

    Article  CAS  PubMed  Google Scholar 

  • Hebestreit H, Arets HG, Aurora P, Boas S, Cerny F, Hulzebos EH, Karila C, Lands LC, Lowman JD, Swisher A (2015) Statement on exercise testing in cystic fibrosis. Respiration 90(4):332–351

    Article  PubMed  Google Scholar 

  • Kleber F, Vietzke G, Wernecke K, Bauer U, Opitz C, Wensel R, Sperfeld A, Gläser S (2000) Impairment of ventilatory efficiency in heart failure. Circulation 101(24):2803–2809

    Article  CAS  PubMed  Google Scholar 

  • Lands LC, Heigenhauser GJ, Jones NL (1992) Analysis of factors limiting maximal exercise performance in cystic fibrosis. Clin Sci 83(4):391–397

    Article  CAS  Google Scholar 

  • MacGowan GA, Murali S (2000) Ventilatory and heart rate responses to exercise: better predictors of heart failure mortality than peak exercise oxygen consumption. Circulation 102(24):e182–e182

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie T, Gifford AH, Sabadosa KA, Quinton HB, Knapp EA, Goss CH, Marshall BC (2014) Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the cystic fibrosis foundation patient registry. Ann Intern Med 161(4):233–241

    Article  PubMed  PubMed Central  Google Scholar 

  • McKone EF, Barry SC, FitzGerald MX, Gallagher CG (2005) Role of arterial hypoxemia and pulmonary mechanics in exercise limitation in adults with cystic fibrosis. J Appl Physiol 99(3):1012–1018

    Article  PubMed  Google Scholar 

  • Moorcroft AJ, Dodd ME, Webb AK (1997) Long-term change in exercise capacity, body mass, and pulmonary function in adults with cystic fibrosis. Chest 111(2):338–343

    Article  CAS  PubMed  Google Scholar 

  • Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF (1992) The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med 327(25):1785–1788

    Article  CAS  PubMed  Google Scholar 

  • Orenstein DM, Nixon PA (1991) Exercise performance and breathing patterns in cystic fibrosis: male–female differences and influence of resting pulmonary function. Pediatr Pulmonol 10(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Penketh A, Wise A, Mearns M, Hodson M, Batten J (1987) Cystic fibrosis in adolescents and adults. Thorax 42(7):526–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philpott J, Houghton K, Luke A (2010) Physical activity recommendations for children with specific chronic health conditions: Juvenile idiopathic arthritis, hemophilia, asthma and cystic fibrosis. Paediatr Child Health 15(4):213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pianosi P, Hochman J (1996) End-tidal estimates of arterial PCO2 for cardiac output measurement by CO2 rebreathing: a study in patients with cystic fibrosis and healthy controls. Pediatr Pulmonol 22(3):154–160

    Article  CAS  PubMed  Google Scholar 

  • Pianosi P, Wolstein R (1996) Carbon dioxide chemosensitivity and exercise ventilation in healthy children and in children with cystic fibrosis. Pediatr Res 40(3):508

    Article  CAS  PubMed  Google Scholar 

  • Pianosi P, Leblanc J, Almudevar A (2005) Peak oxygen uptake and mortality in children with cystic fibrosis. Thorax 60(1):50–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MS, Zheng J (2012) Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 40(6):1324–1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld M, Davis R, FitzSimmons S, Pepe M, Ramsey B (1997) Gender gap in cystic fibrosis mortality. Am J Epidemiol 145(9):794–803

    Article  CAS  PubMed  Google Scholar 

  • Schneiderman-Walker J, Wilkes D, Strug L, Lands L, Pollock S, Selvadurai H, Hay J, Coates A, Corey M (2005) Sex differences in habitual physical activity and lung function decline in children with cystic fibrosis. J Pediatr 147(3):321–326

    Article  CAS  PubMed  Google Scholar 

  • Schwaiblmair M, Faul C, von Scheidt W, Berghaus TM (2012) Ventilatory efficiency testing as prognostic value in patients with pulmonary hypertension. BMC Pulmon Med 12(1):23

    Article  Google Scholar 

  • Stein R, Selvadurai H, Coates A, Wilkes DL, Schneiderman-Walker J, Corey M (2003) Determination of maximal voluntary ventilation in children with cystic fibrosis. Pediatr Pulmonol 35(6):467–471

    Article  PubMed  Google Scholar 

  • Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EH (2017) Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc 14(Supp 1):S123–S128

    Article  PubMed  Google Scholar 

  • Thin A, Dodd J, Gallagher C, Fitzgerald M, Mcloughlin P (2004) Effect of respiratory rate on airway deadspace ventilation during exercise in cystic fibrosis. Respir Med 98(11):1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Troosters T, Langer D, Vrijsen B, Segers J, Wouters K, Janssens W, Gosselink R, Decramer M, Dupont L (2009) Skeletal muscle weakness, exercise tolerance and physical activity in adults with cystic fibrosis. Eur Respir J 33(1):99–106

    Article  CAS  PubMed  Google Scholar 

  • Tucker MA, Crandall R, Seigler N, Rodriguez-Miguelez P, McKie KT, Forseen C, Thomas J, Harris RA (2017) A single bout of maximal exercise improves lung function in patients with cystic fibrosis. J Cyst Fibros 16(6):752–758

    Article  PubMed  Google Scholar 

  • Wasserman K, Hansen J, Sue D, Stringer W, Whipp B (2005) Clinical exercise testing. Principles of exercise testing and interpretation including pathophysiology and clinical applications. Lippincott Williams & Wilkins

Download references

Funding

Supported in part by a Vertex Pharmaceuticals Incorporated IIS Grant and NIH/NIDDK R21DK100783 (R.A.H.).

Author information

Authors and Affiliations

Authors

Contributions

MAT and RAH conceived the study; MAT, NS, PRM, JL, RHC, CF, and KTM recruited patients and collected data; MAT and RAH analyzed and interpreted data and drafted the manuscript. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding author

Correspondence to Ryan A. Harris.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Communicated by Susan Hopkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucker, M.A., Lee, N., Rodriguez-Miguelez, P. et al. Exercise testing in patients with cystic fibrosis—importance of ventilatory parameters. Eur J Appl Physiol 119, 227–234 (2019). https://doi.org/10.1007/s00421-018-4018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-4018-5

Keywords

Navigation