Skip to main content
Log in

Acute and chronic neuromuscular adaptations to local vibration training

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

A Correction to this article was published on 07 December 2017

This article has been updated

Abstract

Vibratory stimuli are thought to have the potential to promote neural and/or muscular (re)conditioning. This has been well described for whole-body vibration (WBV), which is commonly used as a training method to improve strength and/or functional abilities. Yet, this technique may present some limitations, especially in clinical settings where patients are unable to maintain an active position during the vibration exposure. Thus, a local vibration (LV) technique, which consists of applying portable vibrators directly over the tendon or muscle belly without active contribution from the participant, may present an alternative to WBV. The purpose of this narrative review is (1) to provide a comprehensive overview of the literature related to the acute and chronic neuromuscular changes associated with LV, and (2) to show that LV training may be an innovative and efficient alternative method to the ‘classic’ training programs, including in the context of muscle deconditioning prevention or rehabilitation. An acute LV application (one bout of 20–60 min) may be considered as a significant neuromuscular workload, as demonstrated by an impairment of force generating capacity and LV-induced neural changes. Accordingly, it has been reported that a training period of LV is efficient in improving muscular performance over a wide range of training (duration, number of session) and vibration (frequency, amplitude, site of application) parameters. The functional improvements are principally triggered by adaptations within the central nervous system. A model illustrating the current research on LV-induced adaptations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 07 December 2017

    The author would like to correct the reference in the publication of the original article. The corrected reference is given below for your reading.

Abbreviations

ACL:

Anterior cruciate ligament

CSP:

Cortical silent period

EMG:

Electromyography

ICF:

Intracortical facilitation

LICI:

Long-interval cortical inhibition

LV:

Local vibration

LVT:

Local vibration training

MEP:

Motor evoked potential

MRI:

Magnetic resonance imaging

MVC:

Maximal voluntary contraction

PET:

Positron emission tomography

rMV:

Repeated muscle vibration

SICI:

Short-interval cortical inhibition

TMS:

Transcranial magnetic stimulation

TVR:

Tonic vibration reflex

WBV:

Whole body vibration

References

  • Aaboe J, Henriksen M, Christensen R, Bliddal H, Lund H (2009) Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis. Knee 16(4):256–261

    Article  PubMed  Google Scholar 

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92(6):2309–2318

    Article  PubMed  Google Scholar 

  • Abbruzzese M, Minatel C, Faga D, Favale E (1997) Testing for pre-synaptic and post-synaptic changes in the soleus H reflex pathway following selective muscle vibration in humans. Neurosci Lett 231(2):99–102

    Article  CAS  PubMed  Google Scholar 

  • Abbruzzese M, Minatel C, Reni L, Favale E (2001) Postvibration depression of the H-reflex as a result of a dual mechanism: an experimental study in humans. J Clin Neurophysiol 18(5):460–470

    Article  CAS  PubMed  Google Scholar 

  • Abercromby AF, Amonette WE, Layne CS, Mcfarlin BK, Hinman MR, Paloski WH (2007) Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc 39(9):1642

    Article  PubMed  Google Scholar 

  • Aprile I, Di Sipio E, Germanotta M, Simbolotti C, Padua L (2016) Muscle focal vibration in healthy subjects: evaluation of the effects on upper limb motor performance measured using a robotic device. Eur J Appl Physiol 116(4):729–737

    Article  PubMed  Google Scholar 

  • Armstrong WJ, Nestle HN, Grinnell DC, Cole LD, Van Gilder EL, Warren GS, Capizzi EA (2008) The acute effect of whole-body vibration on the hoffmann reflex. J Strength Cond Res 22(2):471–476

    Article  PubMed  Google Scholar 

  • Arnal PJ, Lapole T, Erblang M, Guillard M, Bourrilhon C, Leger D, Chennaoui M, Millet GY (2016) Sleep extension before sleep loss: effects on performance and neuromuscular function. Med Sci Sports Exerc 48(8):1595–1603

    Article  PubMed  Google Scholar 

  • Ashby P, Verrier M (1975) Neurophysiological changes following spinal cord lesions in man. Can J Neurol Sci 2(2):91–100

    Article  CAS  PubMed  Google Scholar 

  • Benwell NM, Mastaglia FL, Thickbroom GW (2007) Differential changes in long-interval intracortical inhibition and silent period duration during fatiguing hand exercise. Exp Brain Res 179(2):255–262

    Article  PubMed  Google Scholar 

  • Bertolasi L, Priori A, Tinazzi M, Bertasi V, Rothwell JC (1998) Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. J Physiol 511(3):947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianconi R, Van der Meulen JP (1963) The response to vibration of the end organs of mammalian muscle spindles. J Neurophysiol 26(1):177–190

    Article  CAS  PubMed  Google Scholar 

  • Binder C, Kaya AE, Liepert J (2009) Vibration prolongs the cortical silent period in an antagonistic muscle. Muscle Nerve 39(6):776–780

    Article  PubMed  Google Scholar 

  • Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SM (2007) Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J Gerontol A Biol Sci Med Sci 62(6):630–635

    Article  PubMed  Google Scholar 

  • Bongiovanni LG, Hagbarth KE (1990) Tonic vibration reflexes elicited during fatigue from maximal voluntary contractions in man. J Physiol 423:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongiovanni LG, Hagbarth KE, Stjernberg L (1990) Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol 423:15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosco C, Iacovelli M, Tsarpela O, Cardinale M, Bonifazi M, Tihanyi J, Viru M, De Lorenzo A, Viru A (2000) Hormonal responses to whole-body vibration in men. Eur J Appl Physiol 81(6):449–454

    Article  CAS  PubMed  Google Scholar 

  • Brooke JD, McIlroy WE (1990) Vibration insensitivity of a short latency reflex linking the lower leg and the active knee extensor muscles in humans. Electroencephalogr Clin Neurophysiol 75(5):401–409

    Article  CAS  PubMed  Google Scholar 

  • Brown MC, Engberg I, Matthews PB (1967) The relative sensitivity to vibration of muscle receptors of the cat. J Physiol 192(3):773–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunetti O, Filippi GM, Lorenzini M, Liti A, Panichi R, Roscini M, Pettorossi VE, Cerulli G (2006) Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(11):1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Brunetti O, Botti F, Roscini M, Brunetti A, Panichi R, Filippi G, Biscarini A, Pettorossi V (2012) Focal vibration of quadriceps muscle enhances leg power and decreases knee joint laxity in female volleyball players. J Sports Med Phys Fitness 52(6):596–605

    CAS  PubMed  Google Scholar 

  • Brunetti O, Botti F, Brunetti A, Biscarini A, Scarponi A, Filippi GM, Pettorossi V (2014) Effects of focal vibration on bone mineral density and motor performance of postmenopausal osteoporotic women. J Sports Med Phys Fitness 55(1–2):118–127

    Google Scholar 

  • Burke D (1980) Muscle spindle activity induced by vibration in man: implications for the tonic stretch reflex. Spinal and supraspinal mechanisms of voluntary motor control and locomotion. Karger, Basel

    Google Scholar 

  • Burke D, Hagbarth K-E, Löfstedt L, Wallin BG (1976a) The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol 261(3):695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke D, Hagbarth KE, Lofstedt L, Wallin BG (1976b) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol 261(3):673–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caliandro P, Celletti C, Padua L, Minciotti I, Russo G, Granata G, La Torre G, Granieri E, Camerota F (2012) Focal muscle vibration in the treatment of upper limb spasticity: a pilot randomized controlled trial in patients with chronic stroke. Arch Phys Med Rehabil 93(9):1656–1661

    Article  PubMed  Google Scholar 

  • Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101(5):1514–1522

    Article  PubMed  Google Scholar 

  • Cattagni T, Billet C, Cornu C, Jubeau M (2016) Prolonged achilles tendon vibration does not alter the neuromuscular performance of plantar flexor muscles. J Sport Rehabil 24:1–11

    Article  Google Scholar 

  • Christova M, Rafolt D, Golaszewski S, Gallasch E (2011) Outlasting corticomotor excitability changes induced by 25 Hz whole-hand mechanical stimulation. Eur J Appl Physiol 111(12):3051–3059

    Article  PubMed  Google Scholar 

  • Claus D, Mills KR, Murray NM (1988) Facilitation of muscle responses to magnetic brain stimulation by mechanical stimuli in man. Exp Brain Res 71(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • Cochrane D (2011) Vibration exercise: the potential benefits. Int J Sports Med 32(02):75–99

    Article  CAS  PubMed  Google Scholar 

  • Cochrane D (2013) The sports performance application of vibration exercise for warm-up, flexibility and sprint speed. Eur J Sport Sci 13(3):256–271

    Article  PubMed  Google Scholar 

  • Cochrane D (2016a) The acute effect of direct vibration on muscular power performance in master athletes. Int J Sports Med 37(02):144–148

    CAS  PubMed  Google Scholar 

  • Cochrane D (2016b) Does muscular force of the upper body increase following acute, direct vibration? Int J Sports Med 37(7):546–551

    Google Scholar 

  • Cochrane DJ, Hawke EJ (2007) Effects of acute upper-body vibration on strength and power variables in climbers. J Strength Cond Res 21(2):527–531

    PubMed  Google Scholar 

  • Cordo P, Gandevia S, Hales J, Burke D, Laird G (1993) Force and displacement-controlled tendon vibration in humans. Electroencephalogr Clin Neurophysiol 89(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Couto B, Silva H, Barbosa M, Szmuchrowski L (2012) Chronic effects of different frequencies of local vibrations. Int J Sports Med 33(2):123–129

    Article  CAS  PubMed  Google Scholar 

  • Curry EL, Clelland JA (1981) Effects of the asymmetric tonic neck reflex and high-frequency muscle vibration on isometric wrist extension strength in normal adults. Phys Ther 61(4):487–495

    Article  CAS  PubMed  Google Scholar 

  • Curtis DR, Eccles JC (1960) Synaptic action during and after repetitive stimulation. J Physiol 150:374–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day B, Marsden C, Obeso J, Rothwell J (1984) Reciprocal inhibition between the muscles of the human forearm. J Physiol 349(1):519–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gail P, Lance J, Neilson P (1966) Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscles in man. J Neurol Neurosurg Psychiatry 29(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Melo M, Pompeo KD, Baroni BM, Vaz MA (2016) Effects of neuromuscular electrical stimulation and low-level laser therapy on neuromuscular parameters and health status in elderly women with knee osteoarthritis: a randomized trial. J Rehabil Med 48(3):293–299

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, Van Raak SM, Schilperoort JV, Hollander AP, de Haan A (2003) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90(5–6):595–600

    Article  PubMed  Google Scholar 

  • Delecluse C, Roelants M, Diels R, Koninckx E, Verschueren S (2005) Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes. Int J Sports Med 26(8):662–668

    Article  CAS  PubMed  Google Scholar 

  • Delwaide PJ (1973) Human monosynaptic reflexes and presynaptic inhibition: An interpretation of spastic hyperreflexia. New developments in electromyography and clinical neurophysiology. Karger, Basel

    Book  Google Scholar 

  • Desmedt JE (1983) Mechanisms of vibration-induced inhibition or potentiations: tonic vibration reflex and vibration paradox in man. Motor control mechanisms in health and disease. Raven Press, New York

    Google Scholar 

  • Desmedt JE, Godaux E (1978) Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J Physiol 285:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114(2):329–338

    Article  CAS  PubMed  Google Scholar 

  • Devanne H, Degardin A, Tyvaert L, Bocquillon P, Houdayer E, Manceaux A, Derambure P, Cassim F (2009) Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans. Eur J Neurosci 30(3):439–448

    Article  CAS  PubMed  Google Scholar 

  • Drummond MD, Couto BP, Augusto IG, Rodrigues SA, Szmuchrowski LA (2014) Effects of 12 weeks of dynamic strength training with local vibration. Eur J Sports Sci 14(7):695–702

    Article  Google Scholar 

  • Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27(12):1581–1589

    Article  CAS  PubMed  Google Scholar 

  • Ekblom M, Thorstensson A (2011) Effects of prolonged vibration on H-reflexes, muscle activation, and dynamic strength. Med Sci Sports Exerc 43(10):1933–1939

    Article  PubMed  Google Scholar 

  • Eklund G, Hagbarth K (1965) Motor effects of vibratory muscle stimuli in man. Electroencephalogr Clin Neurophysiol 19:619

    Google Scholar 

  • Eklund G, Hagbarth KE (1966) Normal variability of tonic vibration reflexes in man. Exp Neurol 16(1):80–92

    Article  CAS  PubMed  Google Scholar 

  • Falempin M, In-Albon SF (1999) Influence of brief daily tendon vibration on rat soleus muscle in non-weight-bearing situation. J Appl Physiol 87(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Farabet A, Souron R, Millet GY, Lapole T (2016) Changes in tibialis anterior corticospinal properties after acute prolonged muscle vibration. Eur J Appl Physiol 116(6):1197–1205

    Article  PubMed  Google Scholar 

  • Farina D, Holobar A, Merletti R, Enoka RM (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121(10):1616–1623

    Article  PubMed  Google Scholar 

  • Färkkilä M, Pyykkö I, Korhonen O, Starck J (1980) Vibration-induced decrease in the muscle force in lumberjacks. Eur J Appl Physiol Occup Physiol 43(1):1–9

    Article  PubMed  Google Scholar 

  • Fattorini L, Ferraresi A, Rodio A, Azzena GB, Filippi GM (2006) Motor performance changes induced by muscle vibration. Eur J Appl Physiol 98(1):79–87

    Article  PubMed  Google Scholar 

  • Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE (2009) Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. Arch Phys Med Rehabil 90(12):2019–2025

    Article  PubMed  Google Scholar 

  • Fitzgerald GK, Piva SR, Irrgang JJ (2003) A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction. J Orthop Sports Phys Therapy 33(9):492–501

    Article  Google Scholar 

  • Forner-Cordero A, Steyvers M, Levin O, Alaerts K, Swinnen SP (2008) Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav Brain Res 190(1):41–49

    Article  PubMed  Google Scholar 

  • Fratini A, Cesarelli M, Bifulco P, Romano M (2009) Relevance of motion artifact in electromyography recordings during vibration treatment. J Electromyogr Kinesiol 19(4):710–718

    Article  PubMed  Google Scholar 

  • Fry A, Folland JP (2014) Prolonged infrapatellar tendon vibration does not influence quadriceps maximal or explosive isometric force production in man. Eur J Appl Physiol 114(8):1757–1766

    Article  PubMed  Google Scholar 

  • Gandevia SC (1998) Neural control in human muscle fatigue: changes in muscle afferents, moto neurones and moto cortical drive. Acta Physiol Scand 162(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    Article  CAS  PubMed  Google Scholar 

  • Gillies JD, Lance JW, Neilson PD, Tassinari CA (1969) Presynaptic inhibition of the monosynaptic reflex by vibration. J Physiol 205(2):329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinsky J, Harvey L, Van Es P (2007) Efficacy of electrical stimulation to increase muscle strength in people with neurological conditions: a systematic review. Physiother Res Int 12(3):175–194

    Article  PubMed  Google Scholar 

  • Gondin J, Guette M, Maffiuletti NA, Martin A (2004) Neural activation of the triceps surae is impaired following 2 weeks of immobilization. Eur J Appl Physiol 93(3):359–365

    Article  CAS  PubMed  Google Scholar 

  • Goodwill AM, Kidgell DJ (2012) The effects of whole-body vibration on the cross-transfer of strength. ScientificWorldJournal 2012:504837

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972) Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science 175(28):1382–1384

    Article  CAS  PubMed  Google Scholar 

  • Hagbarth K (1973) The effect of muscle vibration in normal man and in patients with motor disorders. Karger, Basel

    Book  Google Scholar 

  • Hagbarth K, Eklund G (1966) Motor effects of vibratory muscle stimuli in man. Muscular afferents and motor control. Almqvist and Wiksell, Stockholm

    Google Scholar 

  • Hagbarth KE, Kunesch EJ, Nordin M, Schmidt R, Wallin EU (1986) Gamma loop contributing to maximal voluntary contractions in man. J Physiol 380:575–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol 509(2):607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart JM, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45(1):87–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayward LF, Nielsen RP, Heckman CJ, Hutton RS (1986) Tendon vibration-induced inhibition of human and cat triceps surae group I reflexes: evidence of selective Ib afferent fiber activation. Exp Neurol 94(2):333–347

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Condon SM, Hutton RS, Enoka RM (1984) Can Ib axons be selectively activated by electrical stimuli in human subjects? Exp Neurol 86(3):576–582

    Article  CAS  PubMed  Google Scholar 

  • Herda TJ, Ryan ED, Smith AE, Walter AA, Bemben MG, Stout JR, Cramer JT (2009) Acute effects of passive stretching vs vibration on the neuromuscular function of the plantar flexors. Scand J Med Sci Sports 19(5):703–713

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Liao L-R, Pang MY (2017) Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review. Clin Rehabil 31(1):23–33

    Article  PubMed  Google Scholar 

  • Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37(6):964–972

    PubMed  Google Scholar 

  • Hultborn H, Meunier S, Morin C, Pierrot-Deseilligny E (1987a) Assessing changes in presynaptic inhibition of I a fibres: a study in man and the cat. J Physiol 389:729–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987b) Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J Physiol 389:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries B, Warman G, Purton J, Doyle TL, Dugan E (2004) The influence of vibration on muscle activation and rate of force development during maximal isometric contractions. J Sports Sci Med 3(1):16–22

    PubMed  PubMed Central  Google Scholar 

  • Hunt CC (1961) On the nature of vibration receptors in the hind limb of the cat. J Physiol 155:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iodice P, Bellomo RG, Gialluca G, Fanò G, Saggini R (2011) Acute and cumulative effects of focused high-frequency vibrations on the endocrine system and muscle strength. Eur J Appl Physiol 111(6):897–904

    Article  CAS  PubMed  Google Scholar 

  • Issurin VB, Tenenbaum G (1999) Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J Sports Sci 17(3):177–182

    Article  CAS  PubMed  Google Scholar 

  • Jackson SW, Turner DL (2003) Prolonged muscle vibration reduces maximal voluntary knee extension performance in both the ipsilateral and the contralateral limb in man. Eur J Appl Physiol 88(4–5):380–386

    Article  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18(1):111–129

    Article  CAS  PubMed  Google Scholar 

  • Kihlberg S, Attebrant M, Gemne G, Kjellberg A (1995) Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system. Occup Environ Med 52(11):731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Fukubayashi T, Takeshita D (2002) Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports 12(6):371–375

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Kubo J, Fukudome A (2009) Effects of prolonged tendon vibration stimulation on eccentric and concentric maximal torque and EMGs of the knee extensors. J Sports Sci Med 8(4):548–552

    PubMed  PubMed Central  Google Scholar 

  • Kossev A, Siggelkow S, Schubert M, Wohlfarth K, Dengler R (1999) Muscle vibration: different effects on transcranial magnetic and electrical stimulation. Muscle Nerve 22(7):946–948

    Article  CAS  PubMed  Google Scholar 

  • Kossev A, Siggelkow S, Kapels H, Dengler R, Rollnik JD (2001) Crossed effects of muscle vibration on motor-evoked potentials. Clin Neurophysiol 112(3):453–456

    Article  CAS  PubMed  Google Scholar 

  • Kouzaki M, Shinohara M, Fukunaga T (2000) Decrease in maximal voluntary contraction by tonic vibration applied to a single synergist muscle in humans. J Appl Physiol 89(4):1420–1424

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36(4):674–688

    Article  PubMed  Google Scholar 

  • Krause A, Gollhofer A, Freyler K, Jablonka L, Ritzmann R (2016) Acute corticospinal and spinal modulation after whole body vibration. J Musculoskelet Neuronal Interact 16(4):327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagerquist O, Zehr EP, Docherty D (2006) Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. J Appl Physiol 100(1):83–90

    Article  PubMed  Google Scholar 

  • Lance JW (1973) The reflex effects of muscle vibration. New developments in electromyography and clinical neurophysiology. Karger, Basel

    Google Scholar 

  • Lance J, De Gail P, Neilson P (1966) Tonic and phasic spinal cord mechanisms in man. J Neurol Neurosurg Psychiatry 29(6):535–544

    Article  PubMed Central  Google Scholar 

  • Lapole T, Pérot C (2010) Effects of repeated Achilles tendon vibration on triceps surae force production. J Electromyogr Kinesiol 20(4):648–654

    Article  PubMed  Google Scholar 

  • Lapole T, Pérot C (2012) Hoffmann reflex is increased after 14 days of daily repeated Achilles tendon vibration for the soleus but not for the gastrocnemii muscles. Appl Physiol Nutr Metab 37(1):14–20

    Article  PubMed  Google Scholar 

  • Lapole T, Tindel J (2015) Acute effects of muscle vibration on sensorimotor integration. Neurosci Lett 587:46–50

    Article  CAS  PubMed  Google Scholar 

  • Lapole T, Canon F, Perot C (2012a) Acute postural modulation of the soleus H-reflex after Achilles tendon vibration. Neurosci Lett 523(2):154–157

    Article  CAS  PubMed  Google Scholar 

  • Lapole T, Deroussen F, Perot C, Petitjean M (2012b) Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability. Appl Physiol Nutr Metab 37(4):657–663

    Article  PubMed  Google Scholar 

  • Lapole T, Canon F, Perot C (2013) Ipsi- and contralateral H-reflexes and V-waves after unilateral chronic Achilles tendon vibration. Eur J Appl Physiol 113(9):2223–2231

    Article  PubMed  Google Scholar 

  • Lapole T, Temesi J, Arnal PJ, Gimenez P, Petitjean M, Millet GY (2015a) Modulation of soleus corticospinal excitability during Achilles tendon vibration. Exp Brain Res 233(9):2655–2662

    Article  PubMed  Google Scholar 

  • Lapole T, Temesi J, Gimenez P, Arnal PJ, Millet GY, Petitjean M (2015b) Achilles tendon vibration-induced changes in plantar flexor corticospinal excitability. Exp Brain Res 233(2):441–448

    Article  PubMed  Google Scholar 

  • Liebermann DG, Issurin VB (1997) Effort perception during isotonic muscle contractions with superimposed mechanical vibration stimulation. J Hum Mov Studies 32:171–186

    Google Scholar 

  • Lienhard K, Cabasson A, Meste O, Colson SS (2015) Comparison of sEMG processing methods during whole-body vibration exercise. J Electromyogr Kinesiol 25(6):833–840

    Article  PubMed  Google Scholar 

  • Lundbye-Jensen J, Nielsen JB (2008) Central nervous adaptations following 1 wk of wrist and hand immobilization. J Appl Physiol 105(1):139–151

    Article  PubMed  Google Scholar 

  • Machado A, García-López D, González-Gallego J, Garatachea N (2010) Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports 20(2):200–207

    Article  CAS  PubMed  Google Scholar 

  • Marconi B, Filippi GM, Koch G, Pecchioli C, Salerno S, Don R, Camerota F, Saraceni VM, Caltagirone C (2008) Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. J Neurol Sci 275(1–2):51–59

    Article  PubMed  Google Scholar 

  • Marconi B, Filippi GM, Koch G, Giacobbe V, Pecchioli C, Versace V, Camerota F, Saraceni VM, Caltagirone C (2011) Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients. Neurorehabil Neural Repair 25(1):48–60

    Article  PubMed  Google Scholar 

  • Martin BJ, Park H-S (1997) Analysis of the tonic vibration reflex: influence of vibration variables on motor unit synchronization and fatigue. Eur J Appl Physiol Occup Physiol 75(6):504–511

    Article  CAS  PubMed  Google Scholar 

  • Matthews PBC (1964) Muscle spindles and their motor control. Physiol Rev 44:219–288

    Article  CAS  PubMed  Google Scholar 

  • Matthews P (1966) The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon. J Physiol 184(2):450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazevet D, Meunier S, Pradat-Diehl P, Marchand-Pauvert V, Pierrot-Deseilligny E (2003) Changes in propriospinally mediated excitation of upper limb motoneurons in stroke patients. Brain 126(Pt 4):988–1000

    Article  PubMed  Google Scholar 

  • McCloskey DI (1978) Kinesthetic sensibility. Physiol Rev 58(4):763–820

    Article  CAS  PubMed  Google Scholar 

  • McCloskey D, Ebeling P, Goodwin G (1974) Estimation of weights and tensions and apparent involvement of a “sense of effort”. Exp Neurol 42(1):220–232

    Article  CAS  PubMed  Google Scholar 

  • McNeil CJ, Butler JE, Taylor JL, Gandevia SC (2013) Testing the excitability of human motoneurons. Front Hum Neurosci 7:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Mileva KN, Bowtell JL, Kossev AR (2009) Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol 94(1):103–116

    Article  PubMed  Google Scholar 

  • Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122(10):1989–1997

    Article  PubMed  Google Scholar 

  • Misiaszek JE (2003) The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28(2):144–160

    Article  PubMed  Google Scholar 

  • Moezy A, Olyaei G, Hadian M, Razi M, Faghihzadeh S (2008) A comparative study of whole body vibration training and conventional training on knee proprioception and postural stability after anterior cruciate ligament reconstruction. Br J Sports Med 42(5):373–385

    Article  CAS  PubMed  Google Scholar 

  • Mogilner A, Grossman JA, Ribary U, Joliot M, Volkmann J, Rapaport D, Beasley RW, Llinas RR (1993) Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci U S A 90(8):3593–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosier EM, Herda TJ, Trevino MA, Miller JD (2016) The influence of prolonged vibration on motor unit behavior. Muscle Nerve 6:38094

    Google Scholar 

  • Munn J, Herbert RD, Gandevia SC (2004) Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol 96(5):1861–1866

    Article  CAS  PubMed  Google Scholar 

  • Munte TF, Jobges EM, Wieringa BM, Klein S, Schubert M, Johannes S, Dengler R (1996) Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett 216(3):163–166

    Article  CAS  PubMed  Google Scholar 

  • Murillo N, Valls-Sole J, Vidal J, Opisso E, Medina J, Kumru H (2014) Focal vibration in neurorehabilitation. Eur J Phys Rehabil Med 50(2):231–242

    CAS  PubMed  Google Scholar 

  • Naito E, Ehrsson HH (2001) Kinesthetic illusion of wrist movement activates motor-related areas. NeuroReport 12(17):3805–3809

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci 19(14):6134–6144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima T, Izumizaki M, Sekihara C, Atsumi T, Homma I (2009) Combined effects of preceding muscle vibration and contraction on the tonic vibration reflex. Exp Brain Res 192(2):211–219

    Article  PubMed  Google Scholar 

  • Nazarov V, Spivak G (1987) Development of athlete’s strength abilities by means of biomechanical stimulation method. Theory Pract Phys Cult 12:37–39

    Google Scholar 

  • Ness LL, Field-Fote EC (2009) Effect of whole-body vibration on quadriceps spasticity in individuals with spastic hypertonia due to spinal cord injury. Restor Neurol Neurosci 27(6):621–631

    PubMed  Google Scholar 

  • Pamukoff DN, Ryan ED, Troy Blackburn J (2014) The acute effects of local muscle vibration frequency on peak torque, rate of torque development, and EMG activity. J Electromyogr Kinesiol 24(6):888–894

    Article  PubMed  Google Scholar 

  • Pamukoff DN, Pietrosimone B, Lewek MD, Ryan ED, Weinhold PS, Lee DR, Blackburn JT (2016) Whole-body and local muscle vibration immediately improve quadriceps function in individuals with anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 97(7):1121–1129

    Article  PubMed  Google Scholar 

  • Park H-S, Martin BJ (1993) Contribution of the tonic vibration reflex to muscle stress and muscle fatigue. Scand J Work Environ Health 19(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Pedro RDC, Danbia DCSC, Adriano A, Rafaelle P, Cristiane K, Rebeca C, Paula MG, Dulciane NP, Pedro JM, Jay RS, Mark T, Mario B-F (2014) Whole-body vibration and benefits for people with osteoarthritis: a systematic review. Int J Med Med Sci 6(9):201–210

    Article  Google Scholar 

  • Pietrangelo T, Mancinelli R, Toniolo L, Cancellara L, Paoli A, Puglielli C, Iodice P, Doria C, Bosco G, D’Amelio L, di Tano G, Fulle S, Saggini R, Fano G, Reggiani C (2009) Effects of local vibrations on skeletal muscle trophism in elderly people: mechanical, cellular, and molecular events. Int J Mol Med 24(4):503–512

    Article  CAS  PubMed  Google Scholar 

  • Pistone EM, Laudani L, Camillieri G, Di Cagno A, Tomassi G, Macaluso A, Giombini A (2016) Effects of early whole-body vibration treatment on knee neuromuscular function and postural control after anterior cruciate ligament reconstruction: a randomized controlled trial. J Rehabil Med 48(10):880–886

    Article  PubMed  Google Scholar 

  • Proske U (1997) The mammalian muscle spindle. News Physiol Sci 12:37–42

    Google Scholar 

  • Proske U, Wise AK, Gregory JE (2000) The role of muscle receptors in the detection of movements. Prog Neurobiol 60(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Rabini A, De Sire A, Marzetti E, Gimigliano R, Ferriero G, Piazzini D, Iolascon G, Gimigliano F (2015) Effects of focal muscle vibration on physical functioning in patients with knee osteoarthritis: a randomized controlled trial. Eur J Phys Rehabil Med 51(5):513–520

    CAS  PubMed  Google Scholar 

  • Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S (2002) Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Brain Res 143(3):276–285

    Article  Google Scholar 

  • Ribot-Ciscar E, Roll JP, Tardy-Gervet MF, Harlay F (1996) Alteration of human cutaneous afferent discharges as the result of long-lasting vibration. J Appl Physiol 80(5):1708–1715

    Article  CAS  PubMed  Google Scholar 

  • Rice DA, McNair PJ (2010) Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 40(3):250–266

    Article  PubMed  Google Scholar 

  • Richardson MS, Cramer JT, Bemben DA, Shehab RL, Glover J, Bemben MG (2006) Effects of age and ACL reconstruction on quadriceps gamma loop function. J Geriatr Phys Ther 29(1):26–32

    Article  Google Scholar 

  • Rittweger J (2010) Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol 108(5):877–904

    Article  PubMed  Google Scholar 

  • Rocco MM, Brumberg JC (2007) The sensorimotor slice. J Neurosci Methods 162(1):139–147

    Article  PubMed  Google Scholar 

  • Roelants M, Delecluse C, Goris M, Verschueren S (2004) Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med 25(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47(2):177–190

    Article  CAS  PubMed  Google Scholar 

  • Roll JP, Gilhodes JC, Tardy-Gervet MF (1980) Perceptive and motor effects of muscular vibrations in the normal human: demonstration of a response by opposing muscles. Arch Ital Biol 118(1):51–71

    CAS  PubMed  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76(1):213–222

    Article  CAS  PubMed  Google Scholar 

  • Roll R, Kavounoudias A, Albert F, Legre R, Gay A, Fabre B, Roll JP (2012) Illusory movements prevent cortical disruption caused by immobilization. NeuroImage 62(1):510–519

    Article  CAS  PubMed  Google Scholar 

  • Rollnik JD, Siggelkow S, Schubert M, Schneider U, Dengler R (2001) Muscle vibration and prefrontal repetitive transcranial magnetic stimulation. Muscle Nerve 24(1):112–115

    Article  CAS  PubMed  Google Scholar 

  • Romaiguere P, Vedel J-P, Azulay J, Pagni S (1991) Differential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man. J Physiol 444(1):645–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romaiguère P, Anton J-L, Roth M, Casini L, Roll J-P (2003) Motor and parietal cortical areas both underlie kinaesthesia. Brain Res Cogn Brain Res 16(1):74–82

    Article  PubMed  Google Scholar 

  • Rosenkranz K, Rothwell JC (2003) Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol 551(Pt 2):649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz K, Rothwell JC (2004) The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol 561(Pt 1):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz K, Rothwell JC (2006a) Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur J Neurosci 23(3):822–829

    Article  PubMed  Google Scholar 

  • Rosenkranz K, Rothwell JC (2006b) Spatial attention affects sensorimotor reorganisation in human motor cortex. Exp Brain Res 170(1):97–108

    Article  PubMed  Google Scholar 

  • Rosenkranz K, Pesenti A, Paulus W, Tergau F (2003) Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive stimulation. Exp Brain Res 149(1):9–16

    Article  PubMed  Google Scholar 

  • Rothmuller C, Cafarelli E (1995) Effect of vibration on antagonist muscle coactivation during progressive fatigue in humans. J Physiol 485(Pt 3):857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito A, Ando R, Akima H (2016a) Effects of prolonged patellar tendon vibration on force steadiness in quadriceps femoris during force-matching task. Exp Brain Res 234(1):209–217

    Article  PubMed  Google Scholar 

  • Saito A, Ando R, Akima H (2016b) Effects of prolonged vibration to vastus intermedius muscle on force steadiness of knee extensor muscles during isometric force-matching task. J Electromyogr Kinesiol 31:48–54

    Article  PubMed  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20(5 Suppl):S135–S145

    Article  CAS  PubMed  Google Scholar 

  • Samuelson B, Jorfeldt L, Ahlborg B (1989) Influence of vibration on endurance of maximal isometric contraction. Clin Physiol 9(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28(4):345–376

    Article  CAS  PubMed  Google Scholar 

  • Schlumberger A, Salin D, Schmidtbleicher D (2001) Strength training with superimposed vibrations. Sportverletz Sportschaden 15(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Moritz CT, Pascoe MA, Enoka RM (2005) Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle. J Appl Physiol 99(5):1835–1842

    Article  PubMed  Google Scholar 

  • Siggelkow S, Kossev A, Schubert M, Kappels HH, Wolf W, Dengler R (1999) Modulation of motor evoked potentials by muscle vibration: the role of vibration frequency. Muscle Nerve 22(11):1544–1548

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Brouwer B (2005) Effectiveness of muscle vibration in modulating corticospinal excitability. J Rehabil Res Dev 42(6):787–794

    Article  PubMed  Google Scholar 

  • Souron R, Farabet A, Féasson L, Belli A, Millet GY, Lapole T (2017) Eight weeks of local vibration training increases dorsiflexor muscles cortical voluntary activation. J Appl Physiol. doi:10.1152/japplphysiol.00793.2016

    Article  PubMed  Google Scholar 

  • Steyvers M, Levin O, Van Baelen M, Swinnen SP (2003a) Corticospinal excitability changes following prolonged muscle tendon vibration. NeuroReport 14(15):1901–1905

    Article  PubMed  Google Scholar 

  • Steyvers M, Levin O, Verschueren SM, Swinnen SP (2003b) Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Exp Brain Res 151(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Swayne O, Rothwell J, Rosenkranz K (2006) Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand. Clin Neurophysiol 117(4):855–863

    Article  PubMed  Google Scholar 

  • Tankisheva E, Bogaerts A, Boonen S, Delecluse C, Jansen P, Verschueren SM (2015) Effects of a 6-month local vibration training on bone density, muscle strength, muscle mass and physical performance in postmenopausal women. J Strength Cond Res 29(9):2613–2622

    Article  PubMed  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523(Pt 2):503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushiyama J, Masani K, Kouzaki M, Kanehisa H, Fukunaga T (2005) Difference in aftereffects following prolonged Achilles tendon vibration on muscle activity during maximal voluntary contraction among plantar flexor synergists. J Appl Physiol 98(4):1427–1433

    Article  PubMed  Google Scholar 

  • Vallbo AB (1974) Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol Scand 90(2):319–336

    Article  CAS  PubMed  Google Scholar 

  • Van Boxtel A (1986) Differential effects of low-frequency depression, vibration-induced inhibition, and posttetanic potentiation on H-reflexes and tendon jerks in the human soleus muscle. J Neurophysiol 55(3):551–568

    Article  PubMed  Google Scholar 

  • Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19(3):352–359

    Article  PubMed  Google Scholar 

  • Wakeling JM, Nigg BM, Rozitis AI (2002) Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations. J Appl Physiol 93(3):1093–1103

    Article  PubMed  Google Scholar 

  • Wang P, Yang L, Liu C, Wei X, Yang X, Zhou Y, Jiang H, Lei Z, Reinhardt JD, He C (2016) Effects of whole body vibration exercise associated with quadriceps resistance exercise on functioning and quality of life in patients with knee osteoarthritis: a randomized controlled trial. Clin Rehabil 30(11):1074–1087

    Article  PubMed  Google Scholar 

  • Weier AT, Kidgell DJ (2012) Strength training with superimposed whole body vibration does not preferentially modulate cortical plasticity. ScientificWorldJournal 2012:876328

    Article  PubMed  PubMed Central  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesendanger M, Miles TS (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62(4 Pt 1):1234–1270

    Article  CAS  PubMed  Google Scholar 

  • Yoshitake Y, Shinohara M, Kouzaki M, Fukunaga T (2004) Fluctuations in plantar flexion force are reduced after prolonged tendon vibration. J Appl Physiol 97(6):2090–2097

    Article  PubMed  Google Scholar 

  • Zaidell LN, Mileva KN, Sumners DP, Bowtell JL (2013) Experimental evidence of the tonic vibration reflex during whole-body vibration of the loaded and unloaded leg. PLoS One 8(12):e85247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86(6):455–468

    Article  PubMed  Google Scholar 

  • Zhao X, Fan X, Song X, Shi L (2011) Daily muscle vibration amelioration of neural impairments of the soleus muscle during 2 weeks of immobilization. J Electromyogr Kinesiol 21(6):1017–1022

    Article  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40(3):367–378

    Article  CAS  PubMed  Google Scholar 

  • Ziemus B, Huonker R, Haueisen J, Liepert J, Spengler F, Weiller C (2000) Effects of passive tactile co-activation on median ulnar nerve representation in human SI. NeuroReport 11(6):1285–1288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Michael Asmussen and Rosemary Twomey for English editing. Robin Souron is currently supported by a doctoral research grant (ENS 2014-343) from the University Jean Monnet of Saint-Etienne (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lapole.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Michael Lindinger.

A correction to this article is available online at https://doi.org/10.1007/s00421-017-3776-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souron, R., Besson, T., Millet, G.Y. et al. Acute and chronic neuromuscular adaptations to local vibration training. Eur J Appl Physiol 117, 1939–1964 (2017). https://doi.org/10.1007/s00421-017-3688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3688-8

Keywords

Navigation