Skip to main content
Log in

Prolonged infrapatellar tendon vibration does not influence quadriceps maximal or explosive isometric force production in man

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The influence of muscle/tendon vibration on maximal muscle performance is unclear. This study examined the effect of a prolonged tendon vibration stimulus on maximum voluntary contraction (MVC) and explosive voluntary contraction (EVC) performance.

Methods

Eighteen young healthy males (nine strength trained and nine untrained) completed a series of isometric unilateral knee extensions (EVCs, electrically evoked octet responses, MVCs, ramp contractions) pre and post two separate 30-min intervention trials; infrapatellar tendon vibration (80 Hz), and quiet sitting (control). H max and M max were measured at the start and end of each series of contractions, both pre- and post-intervention (i.e., at four time points). Knee extensor force and both quadriceps and hamstrings EMG were measured throughout each series of contractions.

Results

Vibration had no effect on either maximum force (ANOVA, trial × time interaction P = 0.92), explosive force (P ≥ 0.36), or the associated agonist EMG amplitude during these tasks (P ≥ 0.23). Octet responses were also unaffected by vibration (P ≥ 0.39). Conversely, post-intervention H max/M max was 60 % lower in the vibration trial vs. control, and remained 38 % lower at the end of the post-intervention measurements (t test, both P < 0.01). Individual H max/M max depression did not correlate to changes in either maximum or explosive force (Spearman’s Rank, P ≥ 0.54), and training status had no influence on the effect of vibration.

Conclusion

Prolonged infrapatellar tendon vibration depressed H-reflex amplitude, but did not affect either maximal or explosive isometric force production of the quadriceps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EMGRMS :

Root mean square of electromyography

EVC:

Explosive voluntary contraction

F 25, 50, 75, 100, 150 :

Force at 25, 50, 75, 100 or 150 ms following onset

HAM:

Hamstrings (mean of two EMG recording sites)

MVC:

Maximal voluntary contraction

MVF:

Maximal voluntary force

QUAD:

Quadriceps (mean of six EMG recording sites)

RFD:

Rate of force development

VMd :

Distal vastus medialis EMG recording site

References

  • Allison GT (2003) Trunk muscle onset detection technique for EMG signals with ECG artefact. J Electromyogr Kinesiol 13:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni L, Hagbartht K, Stjernbergt L (1990) Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol 423:15–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckthorpe M, Hannah R, Pain M, Folland J (2012) Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve 46:566–576

    Article  PubMed  Google Scholar 

  • Crone C, Nielsen J (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res 78:28–32

    Article  CAS  PubMed  Google Scholar 

  • Curtis D, Eccles J (1960) Snaptic action during and after repetitive stimulation. J Physiol 150:374–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Ruiter C, Jones D, Sargeant A, de Haan A (1999) Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol 84:1137–1150

    Article  PubMed  Google Scholar 

  • De Ruiter C, van der Linden R, van der Zijden M et al (2003) Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol 88:472–475

    Article  PubMed  Google Scholar 

  • Desmedt J, Godaux E (1978) Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J Physiol 285:197–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deutekom M, Beltman JG, de Ruiter CJ et al (2000) No acute effects of short-term creatine supplementation on muscle properties and sprint performance. Eur J Appl Physiol 82:223–229

    Article  CAS  PubMed  Google Scholar 

  • Earles D, Dierking J, Robertson C, Koceja D (2002) Pre-and post-synaptic control of motoneuron excitability in athletes. Med Sci Sport Exerc 34:1766–1772

    Article  Google Scholar 

  • Ekblom MMN, Thorstensson ALF (2011) Effects of prolonged vibration on H-reflexes, muscle activation, and dynamic strength. Med Sci Sport Exerc 43:1933–1939

    Article  Google Scholar 

  • Erskine J, Smillie I, Leiper J et al (2007) Neuromuscular and hormonal responses to a single session of whole body vibration exercise in healthy young men. Clin Physiol Funct Imaging 27:242–248

    Article  PubMed  Google Scholar 

  • Folland JP, Williams AG (2007) The adaptations to strength training increased strength. Sport Med 37:145–168

    Article  Google Scholar 

  • Folland J, Wakamatsu T, Fimland M (2008) The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. Eur J Appl Physiol 104:739–748

    Article  PubMed  Google Scholar 

  • Folland J, Buckthorpe M, Hannah R (2013) Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports. doi:10.1111/sms.12131

    PubMed  Google Scholar 

  • Hagbarth K, Kunesch E, Wallin EU et al (1986) Gamma loop contributing to maximal voluntary contractions in man. J Physiol 380:575–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hannah R, Minshull C, Folland J (2013) Whole-body vibration does not influence knee joint neuromuscular function or proprioception. Scand J Med Sci Sports 23:96–104

    Article  CAS  PubMed  Google Scholar 

  • Heckman C, Condon S, Hutton R, Enoka R (1984) Can Ib axons be selectively activated by electrical stimuli in human subjects? Exp Neurol 86:576–582

    Article  CAS  PubMed  Google Scholar 

  • Holtermann A, Roeleveld K, Engstrøm M, Sand T (2007) Enhanced H-reflex with resistance training is related to increased rate of force development. Eur J Appl Physiol 101:301–312

    Article  PubMed  Google Scholar 

  • Hultborn H, Illert M, Nielsen J et al (1996) On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res 108:450–462

    Article  CAS  PubMed  Google Scholar 

  • Jackson SW, Turner DL (2003) Prolonged muscle vibration reduces maximal voluntary knee extension performance in both the ipsilateral and the contralateral limb in man. Eur J Appl Physiol 88:380–386

    Article  PubMed  Google Scholar 

  • Kameyama O, Hayes K, Wolfe D (1989) Methodological considerations contributing to variability of the quadriceps H-reflex. Am J Phys Med Rehabil 68:277–282

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Kubo J, Fukudome A (2009) Effects of prolonged tendon vibration stimulation on eccentric and concentric maximal torque and EMGs of the knee extensors. J Sport Sci Med 8:548–552

    Google Scholar 

  • Kouzaki M, Shinohara M, Fukunaga T et al (2000) Decrease in maximal voluntary contraction by tonic vibration applied to a single synergist muscle in humans. J Appl Physiol 89:1420–1424

    CAS  PubMed  Google Scholar 

  • Kuriki H, de Azevedo F, Negrão Filho R, Alves N (2011) Comparison of different analysis techniques for the determination of muscle onset in individuals with patellofemoral pain syndrome. J Eectromyography Kinesiol 21:982–987

    Article  Google Scholar 

  • Lapole T, Canon F, Pérot C (2012) Acute postural modulation of the soleus H-reflex after Achilles tendon vibration. Neurosci Lett 523:154–157

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Chan J, Pierrot-deseilligny E, Burke D (2002) Excitability of human muscle afferents studied using threshold tracking of the H reflex. J Physiol 545:661–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Macefield V, Gandevia S, Bigland-Ritchie B et al (1993) The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. J Physiol 471:429–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pääsuke M, Ereline J, Gapeyeva H (2001) Knee extension strength and vertical jumping performance in nordic combined athletes. J Sports Med Phys Fitness 41:354–361

    PubMed  Google Scholar 

  • Roll J, Vedel J, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  CAS  PubMed  Google Scholar 

  • Sahaly R, Vandewalle H, Driss T, Monod H (2001) Maximal voluntary force and rate of force development in humans: importance of instruction. Eur J Appl Physiol 85:345–350

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Moritz C, Pascoe M, Enoka R (2005) Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle. J Appl Physiol 99:1825–1842

    Article  Google Scholar 

  • Soda P, Mazzoleni S, Cavallo G et al (2010) Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach. Artif Intell Med 50:55–61

    Article  PubMed  Google Scholar 

  • Staude G (2001) Precise onset detection of human motor responses using a whitening filter and the log-likelihood-ratio test. IEEE Trans Biomed Eng 48:1292–1305

    Article  CAS  PubMed  Google Scholar 

  • Tillin N, Jimenez-Reyes P, Pain M, Folland J (2010) Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sport Exerc 42:781–790

    Article  Google Scholar 

  • Tillin N, Folland J, Pain M (2013a) Identification of contraction onset during explosive contractions. Response to Thompson et al. Consistency of rapid muscle force characteristics: influence of muscle contraction onset detection methodology [J Electromyogr Kinesiol 2012;22(6):893–900]. J Electromyogr Kinesiol 23:991–994

    Article  PubMed  Google Scholar 

  • Tillin N, Pain M, Folland J (2013b) Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci 31:66–76

    Article  PubMed  Google Scholar 

  • Ushiyama J, Masani K, Kouzaki M et al (2005) Difference in after effects following prolonged Achilles tendon vibration on muscle activity during maximal voluntary contraction among plantar flexor synergists. J Appl Physiol 98:1427–1433

    Article  PubMed  Google Scholar 

  • Van Boxtel A (1986) Differential effects of low-frequency depression, vibration-induced inhibition, and posttetanic potentiation on H-reflexes and tendon jerks in the human soleus muscle. J Neurophysiol 55:551–568

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest, and that this investigation was conducted according to UK ethical standards for scientific research involving human participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Fry.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fry, A., Folland, J.P. Prolonged infrapatellar tendon vibration does not influence quadriceps maximal or explosive isometric force production in man. Eur J Appl Physiol 114, 1757–1766 (2014). https://doi.org/10.1007/s00421-014-2904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2904-z

Keywords

Navigation