Skip to main content
Log in

Non-local muscle fatigue: effects and possible mechanisms

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Non-local muscle fatigue (NLMF) is characterized by muscle performance impairments in a contralateral or remote non-exercised muscle(s) following a fatiguing protocol of a different muscle group(s). This topic is of interest as it affords insights into physiological determinants of muscle fatigue and may provide practical applications concerning the order of exercises in training and rehabilitation programs.

Methods

A literature review was conducted using Web of Science, PubMed, and Google Scholar databases to evaluate the NLMF effects and possible underlying mechanisms. Overall, 35 studies with 58 outcome measures that met the inclusion criteria were identified.

Results

The literature is conflicting with approximately half of the studies reporting NLMF effects (32 of 58 measurements). However, on closer examination 76 % of outcome measures of the lower limbs reported NLMF effects (23 of 30 measurements) compared to only 32 % in the upper body (9 of 28 measurements). Thus, it appears that NLMF effects may be muscle group dependent. Also, tests that involve prolonged or repetitive contractions provide clearer evidence of NLMF. Other variables potentially influencing the size of the NLMF effect include the fatigued muscle groups, the protocols used to elicit the fatigue, gender and training background of participants.

Conclusion

While the NLMF literature is conflicting, certain variables appear to affect NLMF responses which can account for some of the discrepancies. Furthermore, the NLMF effects may be attributed to four different but interconnected pathways: neurological, biochemical, biomechanical and psychological.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1 RM:

1 Repetition maximum

FDI:

First dorsal interosseous

Mmax:

Femoral nerve stimulation

MVC:

Maximum voluntary contraction

NLMF:

Non-local muscle fatigue

RPE:

Rating of perceived exertion

TMEP:

Thoracic motor evoked potential

References

  • Aboodarda SJ, Copithorne DB, Power KE, Drinkwater E, Behm DG (2015) Elbow flexor fatigue modulates central excitability of the knee extensors. Appl Physiol Nutr Metab 1:1–11

    Google Scholar 

  • Alcaraz PE, Sánchez-Lorente J, Blazevich AJ (2008) Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J Strength Cond Res 22:667–671

    Article  PubMed  Google Scholar 

  • Allen DG, Lee J, Westerblad H (1989) Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. J Physiol 415:433–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen DG, Lamb G, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43:2039–2045

    Article  PubMed  Google Scholar 

  • Amann M (2012) Significance of Group III and IV muscle afferents for the endurance exercising human. Clin Exp Pharmacol Physiol 39:831–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS (2013) Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol 115:355–364

    Article  PubMed Central  PubMed  Google Scholar 

  • Arora S, Budden S, Byrne JM, Behm DG (2015) Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb. Eur J Appl Physiol 1–11. doi:10.1007/s00421-015-3198-5

  • Baker JS, Davies B (2009) Additional considerations and recommendations for the quantification of hand-grip strength in the measurement of leg power during high-intensity cycle ergometry. Res Sports Med 17:145–155

    Article  PubMed  Google Scholar 

  • Bangsbo J, Madsen K, Kiens B, Richter E (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(Pt 2):587–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bäumer T, Münchau A, Weiller C, Liepert J (2002) Fatigue suppresses ipsilateral intracortical facilitation. Exp Brain Res 146:467–473

    Article  PubMed  Google Scholar 

  • Behm D (2004) Force maintenance with submaximal fatiguing contractions. Can J Appl Physiol 29:274–290

    Article  PubMed  Google Scholar 

  • Behm D, Whittle J, Button D, Power K (2002) Intermuscle differences in activation. Muscle Nerve 25:236–243

    Article  CAS  PubMed  Google Scholar 

  • Billaut F, Bishop DJ, Schaerz S, Noakes TD (2011) Influence of knowledge of sprint number on pacing during repeated-sprint exercise. Med Sci Sports Exerc 43:665–672

    Article  PubMed  Google Scholar 

  • Bogdanis G, Nevill M, Lakomy H (1994) Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling. J Sport Sci 12:363–370

    Article  CAS  Google Scholar 

  • Bonato C, Zanette G, Manganotti P, Tinazzi M, Bongiovanni G, Polo A, Fiaschi A (1996) ‘Direct’and ‘crossed’ modulation of human motor cortex excitability following exercise. Neurosci Lett 216:97–100

    CAS  PubMed  Google Scholar 

  • Bouhlel E, Chelly MS, Gmada N, Tabka Z, Shephard R (2010) Effect of a prior force-velocity test performed with legs on subsequent peak power output measured with arms or vice versa. J Strength Cond Res 24:992–998

    Article  PubMed  Google Scholar 

  • Byblow WD, Coxon JP, Stinear CM, Fleming MK, Williams G, Müller JFM, Ziemann U (2007) Functional connectivity between secondary and primary motor areas underlying hand–foot coordination. J Neurophysiol 98(1):414–422

    Article  PubMed  Google Scholar 

  • Cairns S, Lindinger M (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 586:4039–4054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101:1514–1522

    Article  PubMed  Google Scholar 

  • Chaouachi A, Padulo J, Kasmi S, Othmen AB, Chatra M, Behm DG (2015) Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging. doi:10.1111/cpf.12263 (Epub ahead of print)

  • Ciccone AB, Brown LE, Coburn JW, Galpin AJ (2014) Effects of traditional vs. alternating whole-body strength training on squat performance. J Strength Cond Res 28:2569–2577

    Article  PubMed  Google Scholar 

  • da Silva JJ, Behm DG, Gomes WA, de Oliveira Silva FHD, Soares EG, Serpa ÉP, Junior GdBV, Lopes CR, Marchetti PH (2015) Unilateral plantar flexors static-stretching effects on ipsilateral and contralateral jump measures. J Sports Sci Med 14:315

    PubMed Central  PubMed  Google Scholar 

  • Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, Stevens VK, De Cuyper HJ (2001) A functional subdivision of hip, abdominal, and back muscles during asymmetric lifting. Spine 26:114–121

    Article  Google Scholar 

  • de Kam D, Rijken H, Manintveld T, Nienhuis B, Dietz V, Duysens J (2013) Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals. J Appl Physiol 115:34–42

    Article  PubMed  Google Scholar 

  • Decorte N, Lafaix P, Millet G, Wuyam B, Verges S (2012) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scan J Med Sci Sports 22:381–391

    Article  CAS  Google Scholar 

  • Doix AC, Lefevre F, Colson SS (2013) Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS One 8:649

    Article  CAS  Google Scholar 

  • Dorris DC, Power DA, Kenefick E (2012) Investigating the effects of ego depletion on physical exercise routines of athletes. Psychol Sport Exerc 13:118–125

    Article  Google Scholar 

  • Elmer SJ, Amann M, McDaniel J, Martin DT, Martin JC (2013) Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists. Eur J Appl Physiol 113:479–488

    Article  PubMed Central  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faulkner J, Arnold T, Eston R (2011) Effect of accurate and inaccurate distance feedback on performance markers and pacing strategies during running. Scan J Med Sci Spor 2:176–183

    Article  Google Scholar 

  • Fitts RH (2008) The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol 104(2):551–558

    Article  CAS  PubMed  Google Scholar 

  • Galea V, De Bruin H, Cavasin R, McComas AJ (1991) The numbers and relative sizes of motor units estimated by computer. Muscle Nerve 14:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Gandevia S (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Grabiner MD, Owings TM (1999) Effects of eccentrically and concentrically induced unilateral fatigue on the involved and uninvolved limbs. J Electromyogr Kinesiol 9:185–189

    Article  CAS  PubMed  Google Scholar 

  • Graham JD, Sonne MW, Bray SR (2014) It wears me out just imagining it! Mental imagery leads to muscle fatigue and diminished performance of isometric exercise. Biol Psychol 103:1–6

    Article  PubMed  Google Scholar 

  • Grant MC, Robergs R, Baird MF, Baker JS (2014) The Effect of prior upper body exercise on subsequent Wingate performance. Biomed Res Int. doi:10.1155/2014/329328

    Google Scholar 

  • Guertin PA (2012) Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neuro 3:183–198

    Google Scholar 

  • Halperin I, Aboodarda S, Basset F, Byrne J, Behm D (2014a) Pacing strategies during repeated maximal voluntary contractions. Eur J Appl Physiol 114:1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Halperin I, Aboodarda SJ, Behm DG (2014b) Knee extension fatigue attenuates repeated force production of the elbow flexors. Eur J Sport Sci 14:823–829

    Article  PubMed  Google Scholar 

  • Halperin I, Copithorne D, Behm DG (2014c) Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors. Appl Physiol Nutr Metab 39:1338–1344

    Article  PubMed  Google Scholar 

  • Halperin I, Pyne DB, Martin DT (2015) Threats to internal validity in exercise science: a review of overlooked confounding variables. Int J Sports Physiol Perform. doi:10.1123/ijspp.2014-0566 (Epub ahead of print)

  • Heck TG, Schöler CM, de Bittencourt PIH (2011) HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem Funct 29:215–226

    Article  CAS  PubMed  Google Scholar 

  • Hicks AL, Kent-Braun J, Ditor DS (2001) Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev 29:109–112

    Article  CAS  PubMed  Google Scholar 

  • Huang HJ, Ferris DP (2004) Neural coupling between upper and lower limbs during recumbent stepping. J Appl Physiol 97:1299–1308

    Article  PubMed  Google Scholar 

  • Hultman E, Del Canale S, Sjoholm H (1985) Effect of induced metabolic acidosis on intracellular pH, buffer capacity and contraction force of human skeletal muscle. Clin Sci 69:505–510

    Article  CAS  PubMed  Google Scholar 

  • Humphry A, Lloyd-Davies E, Teare R, Williams K, Strutton P, Davey N (2004) Specificity and functional impact of post-exercise depression of cortically evoked motor potentials in man. Eur J Appl Physiol 92:211–218

    Article  CAS  PubMed  Google Scholar 

  • Hunter SK (2009) Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev 37:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Izquierdo M, Gorostiaga E, Garrues M, Anton A, Larrion J, Haekkinen K (1999) Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand 167:57–68

    Article  CAS  PubMed  Google Scholar 

  • Jammes Y, Steinberg JG, By Y, Brerro-Saby C, Condo J, Olivier M, Guieu R, Delliaux S (2012) Fatiguing stimulation of one skeletal muscle triggers heat shock protein activation in several rat organs: the role of muscle innervation. J Exp Biol 215:4041–4048

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Mills DE, Brown PI, Sharpe GR (2014) Prior upper body exercise reduces cycling work capacity but not critical power. Med Sci Sports Exerc 46:802–808

    Article  PubMed  Google Scholar 

  • Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Archiv 406:458–463

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto JEAS, Behm DG (2014) Effect of differing intensities of fatiguing dynamic contractions on contralateral homologous muscle performance. J Sport Sci Med 13:836–845

    Google Scholar 

  • Kennedy A, Hug F, Sveistrup H, Guevel A (2013) Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors. Eur J Appl Physiol 113(3):559–566

    Article  PubMed  Google Scholar 

  • Kennedy DS, Fitzpatrick SC, Gandevia SC, Taylor JL (2015) Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles. J Appl Physiol 118:408–418

    Article  PubMed  Google Scholar 

  • Kern DS, Semmler JG, Enoka RM (2001) Long-term activity in upper- and lower-limb muscles of humans. J Appl Physiol 91(1985):2224–2232

    CAS  PubMed  Google Scholar 

  • Kibler WB, Press J, Sciascia A (2006) The role of core stability in athletic function. Sports Med 36:189–198

    Article  PubMed  Google Scholar 

  • Knuth ST, Dave H, Peters JR, Fitts R (2006) Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 and 15 °C: implications for muscle fatigue. J Physiol 575:887–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koh TJ (2002) Do small heat shock proteins protect skeletal muscle from injury? Exerc Sport Sci Rev 30:117–121

    Article  PubMed  Google Scholar 

  • Komi PV, Bosco C (1978) muscles by men and women. Med Sci Sports Exerc 10:261–265

    CAS  Google Scholar 

  • Kowalchuk JM, Heigenhauser GJ, Jones NL (1984) Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol 57(5):1558–1563

    CAS  PubMed  Google Scholar 

  • Lamb GD, Stephenson DG (2006) Point: counterpoint: lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 100:1410–1412

    Article  CAS  PubMed  Google Scholar 

  • Lattier G, Millet G, Maffiuletti N, Babault N, Lepers R (2003) Neuromuscular differences between endurance-trained, power-trained, and sedentary subjects. J Strength Cond Res 17:514–521

    PubMed  Google Scholar 

  • MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82:69–83

    PubMed  Google Scholar 

  • Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106:857–864

    Article  PubMed  Google Scholar 

  • Martin Ginis KA, Bray SR (2009) Application of the limited strength model of self-regulation to understanding exercise effort, planning and adherence. Psychol Health 25:1147–1160

    Article  Google Scholar 

  • Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Eur J Appl Physiol 454:957–969

    Article  CAS  Google Scholar 

  • Matsuura R, Ogata T (2015) Effects of fatiguing unilateral plantar flexions on corticospinal and transcallosal inhibition in the primary motor hand area. J Physiol Anthropol 34(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  • Mauger AR, Jones AM, Williams CA (2009) Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc 41:451–458

    Article  PubMed  Google Scholar 

  • Mayo X, Iglesias-Soler E, Fernández-Del-Olmo M (2014) Effects of set configuration of resistence exericese on percived exertion. Percept Mot Skills 119:825–837

    Article  PubMed  Google Scholar 

  • McHugh MP, Connolly DA, Eston R, Gleim GW (2000) Electromyographic analysis of exercise resulting in symptoms of muscle damage. J Sports Sci 18:163–172

    Article  CAS  PubMed  Google Scholar 

  • Miller AEJ, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66:254–262

    Article  CAS  PubMed  Google Scholar 

  • Millet GY, Martin V, Lattier G, Ballay Y (2003) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94:193–198

    Article  CAS  PubMed  Google Scholar 

  • Morgan DL, Allen DG (1999) Early events in stretch-induced muscle damage. J Appl Physiol 87:2007–2015

    CAS  PubMed  Google Scholar 

  • Newton MJ, Morgan GT, Sacco P, Chapman DW, Nosaka K (2008) Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res 22:597–607

    Article  PubMed  Google Scholar 

  • Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J (2003) Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol 285:143–148

    Article  Google Scholar 

  • Nybo L, Rasmussen P (2007) Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev 35:110–118

    Article  PubMed  Google Scholar 

  • Oda S, Moritani T (1995) Movement-related cortical potentials during handgrip contractions with special reference to force and electromyogram bilateral deficit. Eur J Appl Physiol Occup Physiol 72:1–5

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Moritani T (1996) Cross-correlation studies of movement-related cortical potentials during unilateral and bilateral muscle contractions in humans. Eur J Appl Physiol Occup Physiol 74:29–35

    Article  CAS  PubMed  Google Scholar 

  • Pageaux B, Marcora S, Lepers R (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45:2254–2264

    Article  PubMed  Google Scholar 

  • Pageaux B, Lepers R, Dietz KC, Marcora SM (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114:1095–1105

    Article  PubMed  Google Scholar 

  • Paillard T, Chaubet V, Maitre J, Dumitrescu M, Borel L (2010) Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb. Neurosci Res 68:301–306

    Article  PubMed  Google Scholar 

  • Place N, Lepers R, Deley G, Millet G (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36:1347–1356

    Article  PubMed  Google Scholar 

  • Post M, Bayrak S, Kernell D, Zijdewind I (2008) Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle. J Appl Physiol 105:70–82

    Article  PubMed  Google Scholar 

  • Rasmussen P, Nielsen J, Overgaard M, Krogh-Madsen R, Gjedde A, Secher NH, Petersen NC (2010) Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol 588:1985–1995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rattey J, Martin PG, Kay D, Cannon J, Marino FE (2006) Contralateral muscle fatigue in human quadriceps muscle: evidence for a centrally mediated fatigue response and cross-over effect. Pflügers Archiv 452:199–207

    Article  CAS  PubMed  Google Scholar 

  • Regueme S, Barthèlemy J, Nicol C (2007) Exhaustive stretch-shortening cycle exercise: no contralateral effects on muscle activity in maximal motor performances. Scan J Med Sci Spor 17:547–555

    Article  CAS  Google Scholar 

  • Ross EZ, Middleton N, Shave R, George K, Nowicky A (2007) Corticomotor excitability contributes to neuromuscular fatigue following marathon running in man. Exp Physiol 92:417–426

    Article  PubMed  Google Scholar 

  • Ross EZ, Goodall S, Stevens A, Harris I (2010) Time course of neuromuscular changes during running in well-trained subjects. Med Sci Sports Exerc 42:1184–1190

    PubMed  Google Scholar 

  • Rozand V, Lebon F, Papaxanthis C, Lepers R (2014) Does a mental training session induce neuromuscular fatigue. Med Sci Sports Exerc 45:1981–1989

    Article  Google Scholar 

  • Seaward BL, Clarke DH (1992) The effects of treadmill running on the isometric fatigue of the handgrip muscles. J Sports Med Phys Fitness 32:243–249

    CAS  PubMed  Google Scholar 

  • Sejersted OM, Sjøgaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481

    CAS  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sidhu SK, Weavil JC, Venturelli M, Garten RS, Rossman MJ, Richardson RS, Gmelch BS, Morgan DE, Amann M (2014) Spinal mu-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. J Physiol 592:5011–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simão R, de Salles BF, Figueiredo T, Dias I, Willardson JM (2012) Exercise order in resistance training. Sports Med 42:251–265

    Article  PubMed  Google Scholar 

  • Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Maruyama A, Maeda M, Etoh S, Hirakoba K, Kawahira K, Rothwell JC (2009) Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. Clin Neurophysiol 120:198–203

    Article  PubMed  Google Scholar 

  • Takahashi K, Maruyama A, Hirakoba K, Maeda M, Etoh S, Kawahira K, Rothwell JC (2011) Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain stimul 4:90–96

    Article  PubMed  Google Scholar 

  • Tarnanen SP, Ylinen JJ, Siekkinen KM, Mälkiä EA, Kautiainen HJ, Häkkinen AH (2008) Effect of isometric upper-extremity exercises on the activation of core stabilizing muscles. Arch Phys Med Rehabil 89:513–521

    Article  PubMed  Google Scholar 

  • Thomas JA, Noble EG (1999) Heat shock does not attenuate low-frequency fatigue. Can J Appl Physiol Pharmacol 77:64–70

    Article  CAS  Google Scholar 

  • Todd G, Petersen NT, Taylor JL, Gandevia SC (2003) The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp Brain Res 150:308–313

    PubMed  Google Scholar 

  • Triscott S, Gordon J, Kuppuswamy A, King N, Davey N, Ellaway P (2008) Differential effects of endurance and resistance training on central fatigue. J Sport Sci 26:941–951

    Article  Google Scholar 

  • Van Dieen JH, Ogita F, De Haan A (2003) Reduced neural drive in bilateral exertions: a performance-limiting factor? Med Sci Sports Exerc 35:111–118

    Article  PubMed  Google Scholar 

  • Zijdewind I, Zwarts MJ, Kernell D (1998) Influence of a voluntary fatigue test on the contralateral homologous muscle in humans? Neurosci Lett 253:41–44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Behm.

Ethics declarations

Conflict of interest

There are no known conflicts of interest involving the authors of this article.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halperin, I., Chapman, D.W. & Behm, D.G. Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol 115, 2031–2048 (2015). https://doi.org/10.1007/s00421-015-3249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3249-y

Keywords

Navigation