Skip to main content
Log in

Modulation of exercise-induced spinal loop properties in response to oxygen availability

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study investigated the effects of acute hypoxia on spinal reflexes and soleus muscle function after a sustained contraction of the plantar flexors at 40 % of maximal voluntary isometric contraction (MVC). Fifteen males (age 25.3 ± 0.9 year) performed the fatigue task at two different inspired O2 fractions (FiO2 = 0.21/0.11) in a randomized and single-blind fashion. Before, at task failure and after 6, 12 and 18 min of passive recovery, the Hoffman-reflex (H max) and M-wave (M max) were recorded at rest and voluntary activation (VA), surface electromyogram (RMSmax), M-wave (M sup) and V-wave (V sup) were recorded during MVC. Normalized H-reflex (H max/M max) was significantly depressed pre-exercise in hypoxia compared with normoxia (0.31 ± 0.08 and 0.36 ± 0.08, respectively, P < 0.05). Hypoxia did not affect time to task failure (mean time of 453.9 ± 32.0 s) and MVC decrease at task failure (−18 % in normoxia vs. −16 % in hypoxia). At task failure, VA (−8 %), RMSmax/M sup (−11 %), H max/M max (−27 %) and V sup/M sup (−37 %) decreased (P < 0.05), but with no FiO2 effect. H max/M max restored significantly throughout recovery in hypoxia but not in normoxia, while V sup/M sup restored significantly during recovery in normoxia but not in hypoxia (P < 0.05). Collectively, these findings indicate that central adaptations resulting from sustained submaximal fatiguing contraction were not different in hypoxia and normoxia at task failure. However, the FiO2-induced differences in spinal loop properties pre-exercise and throughout recovery suggest possible specific mediation by the hypoxic-sensitive group III and IV muscle afferents, supraspinal regulation mechanisms being mainly involved in hypoxia while spinal ones may be predominant in normoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DB100:

Resting doublet twitch torque at 100 Hz

EMG:

Electromyography

FiO2 :

Inspired oxygen fraction

H max :

Hoffman reflex maximal peak-to-peak amplitude

M max :

Resting M-wave maximal peak-to-peak amplitude

M sup :

Superimposed M-wave maximal peak-to-peak amplitude

MVC:

Maximal voluntary contraction

R6:

Neuromuscular function testing after 6 min of passive recovery

R12:

Neuromuscular function testing after 12 min of passive recovery

R18:

Neuromuscular function testing after 18 min of passive recovery

RMS:

Root mean square

SOL:

Soleus muscle

SpO2 :

Pulse arterial oxygen saturation

TF:

Task failure

VA:

Voluntary activation

V sup :

Superimposed volitional-wave maximal peak-to-peak amplitude

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92:2309–2318

    PubMed  Google Scholar 

  • Adam A, De Luca CJ (2005) Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J Appl Physiol 99:268–280

    Article  PubMed  Google Scholar 

  • Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575:937–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA (2007) Severity of arterial hypoxemia affects the relative contributions of peripheral muscle fatigue to exercise performance. J Physiol 15:389–403

    Article  Google Scholar 

  • Arbogast S, Darques JL, Jammes Y (2002) Interactions between endogenous nitric oxide and hypoxemia in activation of group IV muscle afferents. Muscle Nerve 26:194–200

    Article  CAS  PubMed  Google Scholar 

  • Barcroft H, Millen JL (1939) The blood flow through muscle during sustained contraction. J Physiol 97:17–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beliveau L, Helal JN, Gaillard E, Van Hoecke J, Atlan G, Bouissou P (1991) EMG spectral shift- and 31P-NMR-determined intracellular pH in fatigued human biceps brachii muscle. Neurology 41:1998–2001

    Article  CAS  PubMed  Google Scholar 

  • Bigland-Ritchie B, Cafarelli E, Vollestad NK (1986a) Fatigue of submaximal static contractions. Acta Physiol Scand Suppl 556:137–148

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie BR, Dawson NJ, Johansson RS, Lippold OC (1986b) Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. J Physiol 379:451–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caquelard F, Burnet H, Tagliarini F, Cauchy E, Richalet JP, Jammes Y (2000) Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events. Clin Sci (Lond) 98:329–337

    Article  CAS  Google Scholar 

  • Cater HL, Chandratheva A, Benham CD, Morrison B, Sundstrom LE (2003) Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 87:1381–1390

    Article  CAS  PubMed  Google Scholar 

  • Cresswell AG, Löscher WN, Thorstensson A (1995) Influence of gastrocnemius muscle length on triceps surae torque development and electromyographic activity in man Exp Brain Res 105(2):283–290

    Article  CAS  PubMed  Google Scholar 

  • Delliaux S, Jammes Y (2006) Effects of hypoxia on muscle response to tendon vibration in humans. Muscle Nerve 34:754–761

    Article  PubMed  Google Scholar 

  • Dousset E, Decherchi P, Grelot L, Jammes Y (2001) Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. Am J Respir Crit Care Med 164:1476–1480

    Article  CAS  PubMed  Google Scholar 

  • Dousset E, Decherchi P, Grelot L, Jammes Y (2003) Comparison between the effects of chronic and acute hypoxemia on muscle afferent activities from the tibialis anterior muscle. Exp Brain Res 148:320–327

    PubMed  Google Scholar 

  • Duchateau J, Balestra C, Carpentier A, Hainaut K (2002) Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol 541:959–967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duclay J, Martin A (2005) Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction. J Neurophysiol 94:3555–3562

    Article  PubMed  Google Scholar 

  • Fulco CS, Lewis SF, Frykman PN, Boushel R, Smith S, Harman EA, Cymerman A, Pandolf KB (1996) Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia. J Appl Physiol 81:1891–1900

    CAS  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Garland SJ (1991) Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol 435:547–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garland SJ, Gossen ER (2002) The muscular wisdom hypothesis in human muscle fatigue. Exerc Sport Sci Rev 30:45–49

    Article  PubMed  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garner SH, Sutton JR, Burse RL, McComas AJ, Cymerman A, Houston CS (1990) Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude. J Appl Physiol 68:1167–1172

    CAS  PubMed  Google Scholar 

  • Gondin J, Duclay J, Martin A (2006) Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. J Neurophysiol 95:3328–3335

    Article  PubMed  Google Scholar 

  • Goodall S, Ross EZ, Romer LM (2010) Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions. J Appl Physiol 109:1842–1851

    Article  PubMed  Google Scholar 

  • Hong SS, Gibney GT, Esquilin M, Yu J, Xia Y (2004) Effect of protein kinases on lactate dehydrogenase activity in cortical neurons during hypoxia. Brain Res 1009:195–202

    Article  CAS  PubMed  Google Scholar 

  • Hultborn H, Pierrot-Deseilligny E (1979) Changes in recurrent inhibition during voluntary soleus contractions in man studied by an H-reflex technique. J Physiol 297:229–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H (1996) On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res 108:450–462

    Article  CAS  PubMed  Google Scholar 

  • Johnson KV, Edwards SC, Van Tongeren C, Bawa P (2004) Properties of human motor units after prolonged activity at a constant firing rate. Exp Brain Res 154:479–487

    Article  CAS  PubMed  Google Scholar 

  • Katayama K, Amann M, Pegelow DF, Jacques AJ, Dempsey JA (2007) Effect of arterial oxygenation on quadriceps fatigability during isolated muscle exercise. Am J Physiol Regul Integr Comp Physiol 292:R1279–R1286

    Article  CAS  PubMed  Google Scholar 

  • Katayama K, Yoshitake Y, Watanabe K, Akima H, Ishida K (2010) Muscle deoxygenation during sustained and intermittent isometric exercise in hypoxia. Med Sci Sports Exerc 42:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Kayser B, Bokenkamp R, Binzoni T (1993) Alpha-motoneuron excitability at high altitude. Eur J Appl Physiol Occup Physiol 66:1–4

    Article  CAS  PubMed  Google Scholar 

  • Kuchinad RA, Ivanova TD, Garland SJ (2004) Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle. Exp Brain Res 158:345–355

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Barneo J, Pardal R, Ortega-Saenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287

    Article  CAS  PubMed  Google Scholar 

  • Loscher WN, Cresswell AG, Thorstensson A (1996a) Central fatigue during a long-lasting submaximal contraction of the triceps surae. Exp Brain Res 108:305–314

    Article  CAS  PubMed  Google Scholar 

  • Loscher WN, Cresswell AG, Thorstensson A (1996b) Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man. J Physiol 491(Pt 1):271–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D (1991) Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol 440:497–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL (2011) Behaviour of the motoneurone pool in a fatiguing submaximal contraction. J Physiol 589:3533–3544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNeil CJ, Butler JE, Taylor JL, Gandevia SC (2013) Testing the excitability of human motoneurons. Frontiers in human neuroscience 7:152

    Article  PubMed Central  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misiaszek JE (2003) The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28:144–160

    Article  PubMed  Google Scholar 

  • Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons in the central nervous system. J Appl Physiol (1985) 96:367–374

    Article  CAS  Google Scholar 

  • Paasuke M, Rannama L, Ereline J, Gapeyeva H, Oopik V (2007) Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions. Electromyogr Clin Neurophysiol 47:341–350

    CAS  PubMed  Google Scholar 

  • Peltonen JE, Rusko HK, Rantamaki J, Sweins K, Niittymaki S, Viitasalo JT (1997) Effects of oxygen fraction in inspired air on force production and electromyogram activity during ergometer rowing. Eur J Appl Physiol Occup Physiol 76:495–503

    Article  CAS  PubMed  Google Scholar 

  • Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V-wave responses. Neurosci Lett 367:369–374

    Article  CAS  PubMed  Google Scholar 

  • Perrey S, Rupp T (2009) Altitude-induced changes in muscle contractile properties. High Alt Med Biol 10:175–182

    Article  CAS  PubMed  Google Scholar 

  • Racinais S, Cresswell AG (2013) Temperature affects maximum H-reflex amplitude but not homosynaptic postactivation depression. Physiol Rep 1:e00019

    Article  PubMed Central  PubMed  Google Scholar 

  • Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603

    Article  CAS  PubMed  Google Scholar 

  • Racinais S, Maffiuletti NA, Girard O (2013) M-wave, H- and V-reflex recruitment curves during maximal voluntary contraction. J Clin Neurophysiol 30:415–421

    Article  PubMed  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    Article  CAS  PubMed  Google Scholar 

  • Rupp T, Perrey S (2009) Effect of severe hypoxia on prefrontal cortex and muscle oxygenation responses at rest and during exhaustive exercise. Adv Exp Med Biol 645:329–334

    Article  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28:345–376

    Article  CAS  PubMed  Google Scholar 

  • Stein RB (1995) Presynaptic inhibition in humans. Prog Neurobiol 47:533–544

    Article  CAS  PubMed  Google Scholar 

  • Szubski C, Burtscher M, Loscher WN (2007) Neuromuscular fatigue during sustained contractions performed in short-term hypoxia. Med Sci Sports Exerc 39:948–954

    Article  PubMed  Google Scholar 

  • Tanino Y, Daikuya S, Nishimori T, Takasaki K, Kanei K, Suzuki T (2004) H-reflex and reciprocal Ia inhibition after fatiguing isometric voluntary contraction in soleus muscle. Electromyogr Clin Neurophysiol 44:473–476

    CAS  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2008) A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104:542–550

    Article  PubMed  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405

    Article  CAS  PubMed  Google Scholar 

  • Upton AR, McComas AJ, Sica RE (1971) Potentiation of “late” responses evoked in muscles during effort. J Neurol Neurosurg Psychiatry 34:699–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verges S, Rupp T, Jubeau M, Wuyam B, Esteve F, Levy P, Perrey S, Millet GY (2012) Cerebral perturbations during exercise in hypoxia. Am J Physiol Regul Integr Comp Physiol 302:R903–R916

    Article  CAS  PubMed  Google Scholar 

  • Willer JC, Miserocchi G, Gautier H (1987) Hypoxia and monosynaptic reflexes in humans. J Appl Physiol 63:639–645

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rupp.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupp, T., Racinais, S., Bringard, A. et al. Modulation of exercise-induced spinal loop properties in response to oxygen availability. Eur J Appl Physiol 115, 471–482 (2015). https://doi.org/10.1007/s00421-014-3032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3032-5

Keywords

Navigation