Skip to main content

Effect of Severe Hypoxia on Prefrontal Cortex and Muscle Oxygenation Responses at Rest and During Exhaustive Exercise

  • Conference paper
Oxygen Transport to Tissue XXX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 645))

Abstract

Near infrared spectroscopy (NIRS) may provide valuable insight into the determinants of exercise performance. We examined the effects of severe hypoxia on cerebral (prefrontal lobe) and muscle (gastrocnemius) oxygenation at rest and during a fatiguing task. After a 15-min rest, 15 healthy subjects (age 25.3 ± 0.9 yr) performed a sustained contraction of the ankle extensors at 40% of maximal voluntary force until exhaustion. The contraction was performed at two different fractions of inspired O2 fraction (FIO2 = 0.21/0.11) in randomized and single-blind fashion. Cerebral and muscle oxy-(HbO2) deoxy-(HHb) total-hemoglobin (HbTot) and tissue oxygenation index (TOI) were monitored continuously by NIRS. Arterial O2 saturation (SpO2) was estimated by pulse oximetry throughout the protocol. Muscle TOI did not differ between normoxia and hypoxia after the 15-min rest, whereas SpO2 and cerebral TOI significantly dropped (-6.5 ± 0.9% and -3.9 ± 1.0%, respectively, P<0.05) in hypoxia. The muscle NIRS changes during exercise were similar in normoxia and hypoxia, whereas the increased cerebral HbTot and HbO2 near exhaustion were markedly reduced in hypoxia. In conclusion, although FIO2 had no significant effect on endurance time, NIRS patterns near exhaustion in hypoxia differed from normoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. F. Jöbsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198(4323), 1264-1267 (1977).

    Article  PubMed  Google Scholar 

  2. R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari and E. Gratton, Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer, Med. Biol. Eng. Comput. 33(2), 228-230 (1995).

    Article  PubMed  Google Scholar 

  3. K. Shibuya and M. Tachi, Oxygenation in the motor cortex during exhaustive pinching exercise, Respir. Physiol. Neurobiol. 153(3), 261-266 (2006).

    Article  Google Scholar 

  4. M. Ferrari, L. Mottola and V. Quaresima, Principles, techniques, and limitations of near infrared spectroscopy, Can. J. Appl. Physiol. 29(4), 463-487 (2004).

    PubMed  Google Scholar 

  5. H. B. Nielsen, R. Boushel, P. Madsen and N. H. Secher, Cerebral desaturation during exercise reversed by O2 supplementation, Am. J. Physiol. Heart Circ. Physiol. 277(3), H1045-1052 (1999).

    CAS  Google Scholar 

  6. A. W. Subudhi, A. C. Dimmen and R. C. Roach, Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise, J. Appl. Physiol. 103(1), 177-183 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. M. Amann, L. M. Romer, A. W. Subudhi, D. F. Pegelow and J. A. Dempsey, Severity of arterial hypoxemia affects the relative contributions of peripheral muscle fatigue to exercise performance, J. Physiol. 581(Pt1), 389-403 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Bhambhani, R. Malik and S. Mookerjee, Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold, Respir. Physiol. Neurobiol. 156(2), 196-202 (2007).

    Article  PubMed  Google Scholar 

  9. P. N. Ainslie, A. Barach, C. Murrell, M. Hamlin, J. Hellemans and S. Ogoh, Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise, Am J Physiol Heart Circ Physiol 292(2), H976-983 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. J. E. Peltonen, J. M. Kowalchuk, D. H. Paterson, D. S. Delorey, G. R. Dumanoir, R. J. Petrella and J. K. Shoemaker, Cerebral and muscle tissue oxygenation in acute hypoxic ventilatory response test, Respir. Physiol. Neurobiol. 155(1), 71-81 (2007).

    Article  PubMed  Google Scholar 

  11. C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy and E. O. Reynolds, Quantification of adult cerebral hemodynamics by near-infrared spectroscopy, J. Appl. Physiol. 77(6), 2753-2760 (1994).

    PubMed  CAS  Google Scholar 

  12. A. Duncan, J. Meek, M. Clemence, C. Elwell, P. Fallon, L. Tyszczuk, M. Cope and D. Delpy, Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy, Pediatr. Res. 39(5), 889-894 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. E. K. Miller and J. D. Cohen, An integrative theory of prefrontal cortex function, Annu. Rev. Neurosci. 24, 167-202 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. Suzuki, I. Miyai, T. Ono, I. Oda, I. Konishi, T. Kochiyama and K. Kubota, Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study, Neuroimage 23(3), 1020-1026 (2004).

    Article  PubMed  Google Scholar 

  15. P. Rasmussen, E. A. Dawson, L. Nybo, J. J. van Lieshout, N. H. Secher and A. Gjedde, Capillaryoxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans, J. Cereb. Blood Flow Metab. 27(5), 1082-1093 (2007).

    PubMed  CAS  Google Scholar 

  16. Y. Hoshi, N. Kobayashi and M. Tamura, Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model, J. Appl. Physiol. 90(5), 1657-62 (2001).

    PubMed  CAS  Google Scholar 

  17. G. Greisen, Is near-infrared spectroscopy living up to its promises?, Semin. Fetal. Neonatal. Med. 11(6), 498-502 (2006).

    Article  PubMed  Google Scholar 

  18. H. Obrig, C. Hirth, J. G. Junge-Hulsing, C. Doge, T. Wolf, U. Dirnagl and A. Villringer, Cerebral oxygenation changes in response to motor stimulation, J. Appl. Physiol. 81(3), 1174-1183 (1996).

    PubMed  CAS  Google Scholar 

  19. L. Mottola, S. Crisostomi, M. Ferrari and V. Quaresima, Relationship between handgrip sustained submaximal exercise and prefrontal cortex oxygenation, Adv. Exp. Med. Biol. 578, 305-309 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Rupp, T., Perrey, S. (2009). Effect of Severe Hypoxia on Prefrontal Cortex and Muscle Oxygenation Responses at Rest and During Exhaustive Exercise. In: Liss, P., Hansell, P., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology, vol 645. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85998-9_49

Download citation

Publish with us

Policies and ethics