Skip to main content
Log in

A ‘ramp-sprint’ protocol to characterise indices of aerobic function and exercise intensity domains in a single laboratory test

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The lactate threshold (LT), critical power (CP) and maximum oxygen uptake (\(\dot{V}{\text{O}}_{2\text{max} }\)) together partition exercise intensity domains by their common physiological, biochemical and perceptual response characteristics. CP is the greatest power output attainable immediately following intolerance at \(\dot{V}{\text{O}}_{{2{\text{peak}}}}\), and the asymptote of 3 min all-out exercise. Thus we reasoned that a maximal ‘sprint’ immediately following standard ramp-incremental exercise would allow characterisation of the three aerobic indices in a single test.

Methods

Ten healthy men (23 ± 3 year, mean ± SD) performed 9 cycle-ergometry tests on different days: (A) two ramp-incremental tests to intolerance (20 W min−1), immediately followed by a 3 min maximal, variable-power effort ramp-sprint test (RST) for LT, \(\dot{V}{\text{O}}_{{2{\text{peak}}}}\) and sprint-phase power (SP) determination; (B) four constant-power tests for CP and \(\dot{V}{\text{O}}_{2\text{max} }\) determination; (C) constant-power tests at 10 W below LT, and 10 W below and above SP to verify intensity domain characterisation. Capillary [lactate] and breath-by-breath \(\dot{V}{\text{O}}_{2}\) were measured.

Results

Reproducibility of LT, SP and \(\dot{V}{\text{O}}_{2\text{max} }\) measurements between RST repeats was within 5 % or less (r ≥ 0.991, p < 0.001). CP (257 ± 46 W) was not different (p = 0.72) from SP (258 ± 42 W). Exercise 10 W below LT and SP resulted in steady state \(\dot{V}{\text{O}}_{2}\) and [lactate]. \(\dot{V}{\text{O}}_{2\text{max} }\) (4.0 ± 0.6 L min−1), peak [lactate] (11 ± 2 mM) and intolerance were reached 19 ± 5 min into exercise at 10 W above SP.

Conclusions

These data suggest that the key indices of aerobic function may be accurately and reliably estimated during a single exercise test. This test may provide a basis for simplifying assessment and prescription of exercise training and experimental interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CI95 :

95 % confidence interval

CP:

Critical power

LoA:

Limits of agreement

LT:

Lactate threshold

P :

Power output

P peak :

Peak power output

RST:

Ramp-sprint test

SD:

Standard deviation

SE:

Standard error

SP:

Sprint power

t lim :

Tolerable duration

\(\dot{V}{\text{O}}_{2}\) :

Pulmonary oxygen uptake

\(\dot{V}{\text{O}}_{2\text{max} }\) :

Maximum oxygen uptake

\(\dot{V}{\text{O}}_{{2{\text{peak}}}}\) :

Peak oxygen uptake

W′:

Curvature constant

WSP:

Work done above SP

%Δ:

Percentage difference between LT and P peak

References

  • American College of Sports Medicine (ACSM) (2009) Guidelines for exercise testing and prescription, 8th edn. Lippincott Williams & Wilkins, Philadelphia, pp 152–182

  • American Thoracic Society (ATS) and American College of Chest Physicians (ACCP) (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167:211–277

    Google Scholar 

  • Barker T, Poole DC, Noble ML, Barstow TJ (2006) Human critical power-oxygen uptake relationship at different pedalling frequencies. Exp Physiol 91:621–632

    Article  PubMed  Google Scholar 

  • Barker AR, Bond B, Toman C, Williams CA, Armstrong N (2012) Critical power in adolescents: physiological bases and assessment using all-out exercise. Eur J Appl Physiol 112:1359–1370

    Article  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1973) On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol 34:128–132

    CAS  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    CAS  PubMed  Google Scholar 

  • Bergstrom HC, Housh TJ, Zuniga JM, Camic CL, Traylor DA, Schmidt RJ, Johnson GO (2012) A new single work bout test to estimate critical power and anaerobic work capacity. J Strength Cond Res 26:656–663

    PubMed  Google Scholar 

  • Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO (2013) Responses during exhaustive exercise at critical power determined from the 3-min all-out test. J Sports Sci 31:537–545

    Article  PubMed  Google Scholar 

  • Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO (2014) Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J Strength Cond Res 28:592–600

    Article  PubMed  Google Scholar 

  • Black MI, Durant J, Jones AM, Vanhatalo A (2013) Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance. Eur J Sport Sci doi:10.1080/17461391.2013.810306

  • Brickley G, Dekerle J, Hammond AJ, Pringle J, Carter H (2007) Assessment of maximal aerobic power and critical power in a single 90-s isokinetic all-out cycling test. Int J Sports Med 28:414–419

    CAS  PubMed  Google Scholar 

  • Broxterman RM, Ade CJ, Poole DC, Harms CA, Barstow TJ (2013) A single test for the determination of the parameters of the speed-time relationship for running. Respir Physiol Neurobiol 185:380–385

    Article  CAS  PubMed  Google Scholar 

  • Burnley M, Doust JH, Vanhatalo A (2006) A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sport Exerc 38:1995–2003

    Article  Google Scholar 

  • Carter H, Jones AM, Doust JH (1999) Effect of incremental test protocol on the lactate minimum speed. Med Sci Sports Exerc 31:837–845

    Article  CAS  PubMed  Google Scholar 

  • Casaburi R, Storer TW, Ben-Dov I, Wasserman K (1987) Effect of endurance training on possible determinants of VO2 during heavy exercise. J Appl Physiol 62:199–207

    CAS  PubMed  Google Scholar 

  • Cheng CF, Yang YS, Lin HM, Lee CL, Wang CY (2012) Determination of critical power in trained rowers using a three-minute all-out rowing test. Eur J Appl Physiol 112:1251–1260

    Article  PubMed  Google Scholar 

  • Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM (2013) Effects of pacing strategy on work done above critical power during high-intensity exercise. Med Sci Sports Exerc 45:1377–1385

    Article  PubMed  Google Scholar 

  • Clark IW, Murray SR, Pettitt RW (2013) Alternative procedures for the three-minute all-out exercise test. J Strength Cond Res 27:2104–2112

    Article  PubMed  Google Scholar 

  • Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ (2003) Intensity-dependent tolerance to exercise after attaining VO2max in humans. J Appl Physiol 95:483–490

    PubMed  Google Scholar 

  • Constantini K, Sabapathy Surendran, Cross TJ (2014) A single–session testing protocol to determine critical power and W′. Eur J Appl Physiol doi:10.1007/s00421-014-2827-8

  • Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95:1901–1907

    CAS  PubMed  Google Scholar 

  • de Lucas RD, Greco CC, Dekerle J, Carita RA, Gugielmo LG, Denadai BS (2013) Test-retest reliability of a 3-min isokinetic all-out test using two different cadences. J Sci Med Sport. doi:10.1016/j.jsams.2013.09.005

    Google Scholar 

  • Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady-state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89:281–288

    Article  CAS  PubMed  Google Scholar 

  • Dekerle J, Barstow TJ, Regan L, Carter H (2013) The critical power concept in all-out isokinetic exercise. J Sci Med Sport. doi:10.1016/j.jsams.2013.09.003

    Google Scholar 

  • Ferguson C, Whipp BJ, Cathcart AJ, Rossiter HB, Turner AP, Ward SA (2007) Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance. J Appl Physiol 103:812–822

    Article  CAS  PubMed  Google Scholar 

  • Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SM, Ward SA (2010) Effects of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol 108:866–874

    Article  CAS  PubMed  Google Scholar 

  • Francis JT Jr, Quinn TJ, Amann M, LaRoche DP (2010) Defining intensity domains from the end power of a 3-min all-out cycling test. Med Sci Sports Exerc 42:1769–1775

    Article  PubMed  Google Scholar 

  • Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ (2003) The curvature constant parameter of the power-duration curve for varied-power exercise. Med Sci Sports Exerc 35:1413–1418

    Article  PubMed  Google Scholar 

  • Fukuda DH, Hetrick RP, Kendall KL, Smith-Ryan AE, Jackson ME, Stout JR (2014) Characterization of the work-time relationship during cross-country skiing ergometry. Phys Meas 35:31–43

    Article  CAS  Google Scholar 

  • Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6:117–130

    CAS  PubMed  Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171

    Article  CAS  Google Scholar 

  • Hill DW, Smith JC, Leuschel JL, Chasteen SD, Miller SA (1995) Effect of pedal cadence on parameters of the hyperbolic power-time relationship. Int J Sports Med 16:82–87

    CAS  PubMed  Google Scholar 

  • Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc 34:709–714

    Article  PubMed  Google Scholar 

  • Johnson TM, Sexton PJ, Placek AM, Murray SR, Pettitt RW (2011) Reliability of the 3-min all-out exercise test for cycle ergometry. Med Sci Sports Exerc 43:2375–2380

    Article  PubMed  Google Scholar 

  • Jones NL, Killian KJ (2000) Exercise limitation in health and disease. N Engl J Med 343:632–641

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC (2008) Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol 294:R585–R593

    CAS  PubMed  Google Scholar 

  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc 42:1876–1890

    Article  PubMed  Google Scholar 

  • Karsten B, Jobson SA, Hopker J, Passfield L, Beedie C (2013) The 3-min test does not provide a valid measure of critical power using the SRM isokinetic mode. Int J Sports Med doi:10.1055/s-0033-1349093

  • Katch V, Weltman A, Sady S, Freedson P (1978) Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol Occup Physiol 38:219–227

    Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62:2003–2012

    CAS  PubMed  Google Scholar 

  • Lansley KE, Dimenna FJ, Bailey SJ, Jones AM (2011) A ‘new’ method to normalise exercise intensity. Int J Sports Med 32:535–541

    CAS  PubMed  Google Scholar 

  • McClave SA, LeBlanc M, Hawkins SA (2011) Sustainability of critical power determined by a 3-minute all-out test in elite cyclists. J Strength Cond Res 25:3093–3098

  • Moritani T, Nagata A, deVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350

    Article  CAS  PubMed  Google Scholar 

  • Morton RH (2006) The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96:339–352

    Article  PubMed  Google Scholar 

  • Morton RH, Green S, Bishop D, Jenkins DG (1997) Ramp and constant power trials produce equivalent critical power estimates. Med Sci Sports Exerc 29:833–836

    Article  CAS  PubMed  Google Scholar 

  • Murgatroyd SR, Wylde LA (2011) The power-duration relationship of high-intensity exercise: from mathematical parameters to physiological mechanisms. J Physiol 589:2443–2445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB (2011) Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J Appl Physiol 110:1598–1606

    Article  PubMed  Google Scholar 

  • Neder JA, Jones PW, Nery LE, Whipp BJ (2000) Determinants of the exercise endurance capacity in patients with chronic obstructive pulmonary disease. The power-duration relationship. Am J Respir Crit Care Med 162:497–504

    CAS  PubMed  Google Scholar 

  • Özyener F, Rossiter HB, Ward SA, Whipp BJ (2001) Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol 533:891–902

    Article  PubMed Central  PubMed  Google Scholar 

  • Palange P, Ward SA, Carlsen KH, Casaburi R, Gallagher C, Gosselink R, Puente-Maestu L, O’Donnell D, Schols A, Singh S, Whipp BJ (2007) Recommendations on the use of exercise testing in clinical practice. Eur Resp J 29:185–209

    Article  CAS  Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279

    Article  CAS  PubMed  Google Scholar 

  • Pouilly JP, Chatagnon M, Thomas V, Busso T (2005) Estimation of the parameters of the relationship between power and time to exhaustion from a single ramp test. Can J Appl Physiol 30:735–742

    Article  PubMed  Google Scholar 

  • Rausch SM, Whipp BJ, Wasserman K, Huszczuk A (1991) Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J Physiol 444:567–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roston WL, Whipp BJ, Davis JA, Cunningham DA, Effros RM, Wasserman K (1987) Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis 135:1080–1084

    CAS  PubMed  Google Scholar 

  • Scherr J, Wolfarth B, Christie JW, Pressler A, Wagenpfeil S, Halle M (2012) Associations between Borg’s rating of perceive exertion and physiological measures of exercise intensity. Eur J Appl Physiol 113:147–155

    Article  PubMed  Google Scholar 

  • Skiba PF, Jackman S, Clarke D, Vanhatalo A, Jones AM (2014) Effect of work and recovery durations on W’ reconstitution during intermittent exercise. Med Sci Sports Exerc doi:10.1249/MSS.0000000000000226

  • Smith JC, Hill DW (1993) Stability of parameter estimates derived from the power/time relationship. Can J Appl Physiol 18:43–47

    Article  CAS  PubMed  Google Scholar 

  • van der Vaart H, Murgatroyd SR, Rossiter HB, Chen C, Casaburi R, Porszasz J (2013) Selecting constant work rate for endurance testing in COPD: the role of the power-duration relationship. COPD. doi:10.3109/15412555.2013.840572

    PubMed  Google Scholar 

  • Vanderwalle H, Vautier JF, Kachouri M, Lechevalier JM, Monod H (1997) Work-exhaustion time relationship and the critical power concept. A critical review. J Sports Med Phys Fit 37:89–102

    Google Scholar 

  • Vanhatalo A, Doust JH, Burnley M (2007) Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc 39:548–555

    Article  PubMed  Google Scholar 

  • Vanhatalo A, Doust JH, Burnley M (2008a) A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc 40:1639–1699

    Google Scholar 

  • Vanhatalo A, Doust JH, Burnley M (2008b) Robustness of a 3 min all-out cycling test to manipulations of power profile and cadence in humans. Exp Physiol 93:383–390

    Article  PubMed  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun X-G, Whipp BJ (2012) Principles of exercise testing and interpretation: Including pathophysiology and clinical applications, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 71–106

    Google Scholar 

  • Whipp BJ (1996) Domains of aerobic function and their limiting parameters. In: Steinacker JM, Ward SA (eds) The Physiology and Pathophysiology of Exercise Tolerance. Plenum, New York, pp 83–89

    Chapter  Google Scholar 

  • Whipp BJ, Ward SA (1992) Pulmonary gas exchange dynamics and the tolerance to muscular exercise: effects of fitness and training. Ann Physiol Anthropol 11:207–214

    Article  CAS  PubMed  Google Scholar 

  • Whipp BJ, Davis JA, Torres F, Wasserman K (1981) A test to determine parameters of aerobic function during exercise. J Appl Physiol 50:217–221

    CAS  PubMed  Google Scholar 

  • Whipp BJ, Ward SA, Wasserman K (1986) Respiratory markers of the anaerobic threshold. Adv Cardiol 35:47–64

    CAS  PubMed  Google Scholar 

  • Whipp BJ, Ward SA, Rossiter HB (2005) Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc 37:1574–1585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution of the participants. The study was supported by the Biotechnology and Biological Sciences Research Council UK (BB/I00162X/1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry B. Rossiter.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murgatroyd, S.R., Wylde, L.A., Cannon, D.T. et al. A ‘ramp-sprint’ protocol to characterise indices of aerobic function and exercise intensity domains in a single laboratory test. Eur J Appl Physiol 114, 1863–1874 (2014). https://doi.org/10.1007/s00421-014-2908-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2908-8

Keywords

Navigation