Skip to main content
Log in

Size-dependent nonlinear stability response of perforated nano/microbeams via Fourier series

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, perforated and restrained nanobeams with deformable boundary conditions are modeled based on the non-local strain gradient elasticity theory with the elastic medium effect. In this approach in which the Fourier infinite series and Stokes’ transformation are used together, the nanobeam is detached into parts from the two boundary points with the main part. Then using elastic force boundary conditions, a system of linear equations in terms of nonlinearity, elastic medium parameter, spring coefficients and small size effects are derived and the eigenvalue solution of these equations is also presented. The nonlinear stability of restrained nanobeam is examined and the effects of size parameters, perforation and elastic spring coefficients are studied. To reveal the accuracy and effectiveness of the offered model, several numerical applications are solved for the nonlinear stability response of restrained nanobeams with elastic medium effects. The outcomes of this method validated that the presented approach is appropriate for the stability behavior of rigid and restrained nanobeams with perforated cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605), 147–150 (1996)

    Article  Google Scholar 

  2. Sun, L., Song, Y., Wang, L., Guo, C., Sun, Y., Liu, Z., Li, Z.: Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C 112(5), 1415–1422 (2008)

    Article  Google Scholar 

  3. Gupta, A., Akin, D., Bashir, R.: Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22(6), 2785–2791 (2004)

    Google Scholar 

  4. Li, X., Yu, H., Gan, X., Xia, X., Xu, P., Li, J., Liu, M., Li, Y.: Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection. J. Sens. 2009, 1–10 (2009)

    Google Scholar 

  5. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008)

    Article  Google Scholar 

  6. Díaz, A., Saxena, V., González, J., David, A., Casañas, B., Carpenter, C., Batteas, J.D., Colón, J.L., Clearfield, A., Hussain, M.D.: Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 48(12), 1754–1756 (2012)

    Article  Google Scholar 

  7. Bhande, S.S., Mane, R.S., Ghule, A.V., Han, S.H.: A bismuth oxide nanoplate-based carbon dioxide gas sensor. Scr. Mater. 65(12), 1081–1084 (2011)

    Article  Google Scholar 

  8. Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)

    Article  Google Scholar 

  9. Ball, P.: Roll up for the revolution. Nature 414(6860), 142–145 (2001)

    Article  Google Scholar 

  10. Bodily, B.H., Sun, C.T.: Structural and equivalent continuum properties of single-walled carbon nanotubes. Int. J. Mater. Prod. Technol. 18(4–6), 381–397 (2003)

    Article  Google Scholar 

  11. Li, C., Chou, T.W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68(7), 073405 (2003)

    Article  Google Scholar 

  12. Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)

    Article  MATH  Google Scholar 

  13. Arda, M., Aydogdu, M.: Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity. Appl. Phys. A 122, 1–10 (2016)

    Article  Google Scholar 

  14. Yan, X.: Free vibration analysis of a rotating nanobeam using integral form of Eringen’s nonlocal theory and element-free Galerkin method. Appl. Phys. A 128(8), 641 (2022)

    Article  Google Scholar 

  15. Shafiei, N., Kazemi, M., Ghadiri, M.: Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen’s nonlocal elasticity and DQM. Appl. Phys. A 122, 1–18 (2016)

    Article  Google Scholar 

  16. Nie, G., Zhong, Z.: Dynamic analysis of multi-directional functionally graded annular plates. Appl. Math. Model. 34(3), 608–616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shariyat, M., Alipour, M.M.: Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations. Arch. Appl. Mech. 81(9), 1289–1306 (2011)

    Article  MATH  Google Scholar 

  18. Alipour, M.M., Shariyat, M., Shaban, M.: A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations. Int. J. Mech. Mater. Des. 6(4), 293–304 (2010)

    Article  Google Scholar 

  19. Ahlawat, N., Lal, R.: Buckling and vibrations of multi-directional functionally graded circular plate resting on elastic foundation. Procedia Eng. 144, 85–93 (2016)

    Article  MATH  Google Scholar 

  20. Zafarmand, H., Kadkhodayan, M.: Three dimensional elasticity solution for static and dynamic analysis of multi-directional functionally graded thick sector plates with general boundary conditions. Compos. Part B Eng. 69, 592–602 (2015)

    Article  Google Scholar 

  21. Panda, S.K., Singh, B.N.: Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment. Mech. Adv. Mater. Struct. 20(10), 842–853 (2013)

    Article  Google Scholar 

  22. Ramteke, P.M.: Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel Compos. Struct. Int. J. 33(6), 865–875 (2019)

    Google Scholar 

  23. Ebrahimi, F., Karimiasl, M.: Non-local and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mech. Adv. Mater. Struct. 25(11), 943–952 (2018)

    Article  Google Scholar 

  24. Ghorbanpour Arani, A., Jamali, M., Ghorbanpour-Arani, A.H., Kolahchi, R., Mosayyebi, M.: Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(2), 387–403 (2017)

    Article  Google Scholar 

  25. Zenkour, A.M.: Non-local transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Phys. E Low-Dimens. Syst. Nanostruct. 79, 87–97 (2016)

    Article  Google Scholar 

  26. Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the non-local strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    Article  MATH  Google Scholar 

  27. Babaei, H., Kiani, Y., Eslami, M.R.: Thermomechanical nonlinear in-plane analysis of fix-ended FGM shallow arches on nonlinear elastic foundation using two-step perturbation technique. Int. J. Mech. Des. (2018). https://doi.org/10.1007/s10999-018-9420-y

    Article  MATH  Google Scholar 

  28. Babaei, H., Kiani, Y., Eslami, M.R.: Thermally induced large deflection analysis of shear deformable FGM shallow curved tubes using perturbation method. ZAMM J. Appl. Math. Mech. (2018). https://doi.org/10.1002/zamm.201800148

    Article  Google Scholar 

  29. Babaei, H., Kiani, Y., Eslami, M.R.: Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment. Thin Walled Struct. 132, 48–57 (2018)

    Article  Google Scholar 

  30. Babaei, H., Kiani, Y., Eslami, M.R.: Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load. J. Therm. Stress 41, 847–865 (2018)

    Article  Google Scholar 

  31. Huang, Y., Li, X.F.: Buckling of functionally graded circular columns including shear deformation. Mater. Des. 31, 3159–3166 (2010)

    Article  Google Scholar 

  32. Huang, Y., Li, X.F.: Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity. Int. J. Mech. Sci. 52, 595–601 (2010)

    Article  Google Scholar 

  33. Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)

    Article  MATH  Google Scholar 

  34. Akgöz, B., Civalek, Ö.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20(4), 606–616 (2014)

    Article  MathSciNet  Google Scholar 

  35. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded tapered microbeams via rayleigh-ritz method. Mathematics 10(23), 4429 (2022)

    Article  Google Scholar 

  36. She, G.L., Shu, X., Ren, Y.R.: Thermal buckling and post-buckling analysis of piezoelectric FGM beams based on high-order shear deformation theory. J. Therm. Stress 40, 783–797 (2017)

    Article  Google Scholar 

  37. She, G.L., Yuan, F.G., Ren, Y.R.: Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear defor- mation theory. Appl. Math. Model. 47, 340–357 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tounsi, A., Benguediab, S., Semmah, A., Zidour, M.: Non-local effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1 (2013)

    Article  Google Scholar 

  39. Ghadiri, M., Soltanpour, M., Yazdi, A., Safi, M.: Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation. Appl. Phys. A 122, 1–21 (2016)

    Google Scholar 

  40. Hosseini, S.A.H., Rahmani, O.: Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A 122, 1–11 (2016)

    Article  Google Scholar 

  41. Beni, Y.T., Mehralian, F., Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Article  Google Scholar 

  42. Kiani, K., Mehri, B.: Assessment of nanotube structures under a moving nanoparticle using non-local beam theories. J. Sound Vib. 329(11), 2241–2264 (2010)

    Article  Google Scholar 

  43. Zhang, B., He, Y., Liu, D., Shen, L., Lei, J.: Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory. Compos. Struct. 119, 578–597 (2015)

    Article  Google Scholar 

  44. Najar, F., El-Borgi, S., Reddy, J.N., Mrabet, K.: Nonlinear non-local analysis of electrostatic nanoactuators. Compos.Struct. 120, 117–128 (2015)

    Article  Google Scholar 

  45. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Fathi, M.: Nano-resonator frequency response based on strain gradient theory. J. Phys. D Appl. Phys. 47(36), 365303 (2014)

    Article  Google Scholar 

  46. Souayeh, S., Kacem, N.: Computational models for large amplitude nonlinear vibrations of electrostatically actuated carbon nanotube-based mass sensors. Sens. Actuators A 208, 10–20 (2014)

    Article  Google Scholar 

  47. Ibach, H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29(5), 195–263 (1997)

    Article  Google Scholar 

  48. Lim, C.W., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jalaei, M.H., Thai, H.T., Civalek, Ӧ: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mobki, H., Sadeghi, M.H., Rezazadeh, G., Fathalilou, M.: Nonlinear behavior of a nano-scale beam considering length scale-parameter. Appl. Math. Model. 38(5), 1881–1895 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Farshi, B., Assadi, A., Alinia-ziazi, A.: Frequency analysis of nanotubes with consideration of surface effects. Appl. Phys. Lett. 96(9), 093105 (2010)

    Article  Google Scholar 

  53. He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93(26), 263108 (2008)

    Article  Google Scholar 

  54. Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro and nano-rods/tubes based on non-local Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006)

    Article  Google Scholar 

  55. Polizzotto, C.: Non-local elasticity and related variational principles. Int. J. Solids Struct. 38, 7359–7380 (2001)

    Article  MATH  Google Scholar 

  56. Aydogdu, M.: A general non-local beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41, 1651–1655 (2009)

    Article  Google Scholar 

  57. Eltaher, M.A., Mahmoud, F.F., Assie, A.E., Meletis, E.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760–774 (2013)

    MathSciNet  MATH  Google Scholar 

  58. Thang, P.T., Nguyen-Thoi, T., Lee, J.: Modeling and analysis of bi-directional functionally graded nanobeams based on nonlocal strain gradient theory. Appl. Math. Comput. 407, 126303 (2021)

    MathSciNet  MATH  Google Scholar 

  59. Lal, R., Dangi, C.: Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen’s nonlocal theory incorporating the surface effect. Appl. Math. Comput. 395, 125857 (2021)

    MathSciNet  MATH  Google Scholar 

  60. Civalek, Ö., Uzun, B., Yaylı, M.Ö.: An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. 41(2), 67 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  61. Abouelregal, A.E., Ersoy, H., Civalek, Ö.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13), 1536 (2021)

    Article  Google Scholar 

  62. Abouelregal, A.E., Akgöz, B., Civalek, Ö.: Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the Hall current effect by the fourth-order Moore–Gibson–Thompson equation. Comput. Math. Appl. 141, 102–115 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  63. Akbaş, ŞD., Ersoy, H., Akgöz, B., Civalek, Ö.: Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics 9(9), 1048 (2021)

    Article  Google Scholar 

  64. Numanoğlu, H.M., Ersoy, H., Akgöz, B., Civalek, O.: A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. 45, 2592–2614 (2022). https://doi.org/10.1002/mma.7942

    Article  MathSciNet  Google Scholar 

  65. Uzun, B., Yaylı, M.Ö.: Nonlocal vibration analysis of Ti–6Al–4V/ZrO2 functionally graded nanobeam on elastic matrix. Arab. J. Geosci. 13(4), 1–10 (2020)

    Article  Google Scholar 

  66. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V., Tompe, U.K.: Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure. J. Eng. Mech. 144(9), 04018094 (2018)

    Article  Google Scholar 

  67. Yaylı, M.Ö., Uzun, B., Deliktaş, B.: Buckling analysis of restrained nanobeams using strain gradient elasticity. In: Waves in Random and Complex Media, pp. 1–20 (2021)

  68. Uzun, B., Kafkas, U., Yaylı, M.Ö.: Stability analysis of restrained nanotubes placed in electromagnetic field. Microsyst. Technol. 26(12), 3725–3736 (2020)

    Article  Google Scholar 

  69. Uzun, B., Yaylı, M.Ö.: Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory. Mater. Today Commun. 32, 103969 (2022)

    Article  Google Scholar 

  70. Abdelrahman, A.A., Esen, I., Özarpa, C., Eltaher, M.A.: Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory. Appl. Math. Model. 96, 215–235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  71. Abdelrahman, A.A., Mohamed, N.A., Eltaher, M.A.: Static bending of perforated nanobeams including surface energy and microstructure effects. Eng. Comput. 38, 1–21 (2020)

    Google Scholar 

  72. Eltaher, M.A., Kabeel, A.M., Almitani, K.H., Abdraboh, A.M.: Static bending and buckling of perforated nonlocal size-dependent nanobeams. Microsyst. Technol. 24(12), 4881–4893 (2018)

    Article  Google Scholar 

  73. Abdelrahman, A.A., Eltaher, M.A.: On bending and buckling responses of perforated nanobeams including surface energy for different beams theories. Eng. Comput. 38, 1–27 (2020)

    Google Scholar 

  74. Luschi, L., Pieri, F.: An analytical model for the determination of resonance frequencies of perforated beams. J. Micromech. Microeng. 24(5), 055004 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Büşra Uzun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civalek, Ö., Uzun, B. & Yaylı, M.Ö. Size-dependent nonlinear stability response of perforated nano/microbeams via Fourier series. Arch Appl Mech 93, 4425–4443 (2023). https://doi.org/10.1007/s00419-023-02501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02501-5

Keywords

Navigation