Skip to main content
Log in

Exponential functionally graded plates resting on Winkler–Pasternak foundation: free vibration analysis by dynamic stiffness method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this present work, the dynamic stiffness method (DSM) formulation is used to investigate the natural vibration of an exponential functionally graded plate (E-FGM) within the framework of Kirchhoff’s plate theory. The material property continuously varies along the transverse direction of the E-FGM plate by applying the exponential law. The governing partial differential equation of motion is derived by implementing Hamilton's principle based on the physical neutral surface of the FGM plate. The Wittrick–Williams algorithm is applied as a solution method to solve the complex nature of the dynamic stiffness matrix and compute the natural vibration frequencies of the E-FGM rectangular plates. The effect of different numerical parameter values (exponential volume fraction index, aspect ratio, boundary conditions density ratio, modulus ratio, elastic foundation parameters) on natural frequency is also reported. The obtained natural frequencies are compared with those available in the literature. Finally, this study presents a new set of DSM frequency results for different Levy-type boundary conditions for E-FGM plates resting on a Winkler–Pasternak elastic foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Qian, L.F., Batra, R.C.: Design of bidirectional functionally graded plate for optimal natural frequencies. J. Sound Vib. 280, 415–424 (2005). https://doi.org/10.1016/j.jsv.2004.01.042

    Article  Google Scholar 

  2. Tang, A.Y., Wu, J.X., Li, X.F., Lee, K.Y.: Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int. J. Mech. Sci. 89, 1–11 (2014). https://doi.org/10.1016/j.ijmecsci.2014.08.017

    Article  Google Scholar 

  3. Suresh, S., Mortensen, A.: Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behaviour. Int. Mater. Rev. 42, 85–116 (1997). https://doi.org/10.1179/imr.1997.42.3.85

    Article  Google Scholar 

  4. Chi, S.: Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. Int. J. Solids Struct. 43, 3657–3674 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.011

    Article  MATH  Google Scholar 

  5. Lee, W.H., Han, S.C., Park, W.T.: A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation. Compos. Struct. 122, 330–342 (2015). https://doi.org/10.1016/j.compstruct.2014.11.047

    Article  Google Scholar 

  6. Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(3), 526–536 (2010). https://doi.org/10.1243/09544062JMES2171

    Article  Google Scholar 

  7. Kumar, S., Jana, P.: Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates. Int. J. Mech. Sci. 163, 105105 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105105

    Article  Google Scholar 

  8. Ali, M.I., Azam, M.S., Ranjan, V., Banerjee, J.R.: Free vibration of sigmoid functionally graded plates using the dynamic stiffness method and the Wittrick–Williams algorithm. Comput. Struct. 244, 106424 (2021). https://doi.org/10.1016/j.compstruc.2020.106424

    Article  Google Scholar 

  9. Straughan WT. Analysis of plates on elastic foundations. Texas Tech Univ 1990:1–97. https://ttu-ir.tdl.org/handle/2346/13151 (PhD Thesis)

  10. Kerr, A.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964). https://doi.org/10.1115/1.3629667

    Article  MATH  Google Scholar 

  11. Winkler, E.: Theory of Elasticity and Strength. Dominicus Prague (1867)

  12. Pasternak, PL. On a new method of an elastic foundation by means of two foundation constants. Gos Izd Lit Po Stroit i Arkhitekture (1954)

  13. Kumar, S., Ranjan, V., Jana, P.: Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Compos. Struct. 197, 39–53 (2018). https://doi.org/10.1016/j.compstruct.2018.04.085

    Article  Google Scholar 

  14. Wittrick, W.H., Williams, F.W.: Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings. Int. J. Mech. Sci. 16, 209–239 (1974). https://doi.org/10.1016/0020-7403(74)90069-1

    Article  MATH  Google Scholar 

  15. Banerjee, J.R.: Dynamic stiffness formulation for structural elements: a general approach. Comput. Struct. 63, 101–103 (1997). https://doi.org/10.1016/S0045-7949(96)00326-4

    Article  MATH  Google Scholar 

  16. Boscolo, M., Banerjee, J.R.: Dynamic stiffness elements and their applications for plates using first order shear deformation theory. Comput. Struct. 89, 395–410 (2011). https://doi.org/10.1016/j.compstruc.2010.11.005

    Article  Google Scholar 

  17. Boscolo, M., Banerjee, J.R.: Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates. J. Sound Vib. 333, 200–227 (2014). https://doi.org/10.1016/j.jsv.2013.08.031

    Article  Google Scholar 

  18. Papkov, S.O., Banerjee, J.R.: A new method for free vibration and buckling analysis of rectangular orthotropic plates. J. Sound Vib. 339, 342–358 (2015). https://doi.org/10.1016/j.jsv.2014.11.007

    Article  Google Scholar 

  19. Banerjee, J.R., Papkov, S.O., Liu, X., Kennedy, D.: Dynamic stiffness matrix of a rectangular plate for the general case. J. Sound Vib. 342, 177–199 (2015). https://doi.org/10.1016/j.jsv.2014.12.031

    Article  Google Scholar 

  20. Liu, X., Banerjee, J.R.: Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method. Comput. Struct. 164, 108–126 (2016). https://doi.org/10.1016/j.compstruc.2015.11.005

    Article  Google Scholar 

  21. Nefovska-danilovic, M., Kolarevic, N., Marjanović, M., Petronijevic, M.: Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies—part I: theory. Compos. Struct. 159, 728–744 (2016). https://doi.org/10.1016/j.compstruct.2016.09.022

    Article  Google Scholar 

  22. Banerjee, J.R., Ananthapuvirajah, A.: An exact dynamic stiffness matrix for a beam incorporating Rayleigh-Love and Timoshenko theories. Int. J. Mech. Sci. 150, 337–347 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.012

    Article  Google Scholar 

  23. Shen, H.S., Yang, J., Zhang, L.: Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations. J. Sound Vib. 244, 299–320 (2001). https://doi.org/10.1006/jsvi.2000.3501

    Article  Google Scholar 

  24. Omurtag, M.H., Özütok, A., Aköz, A.Y., Özçellkörs, Y.: Free vibration analysis of kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gâteaux differential. Int. J. Numer. Methods Eng. 40, 295–317 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2%3c295::AID-NME66%3e3.0.CO;2-2

    Article  Google Scholar 

  25. Huang, M.H., Thambiratnam, D.P.: Analysis of plate resting on elastic supports and elastic foundation by finite strip method. Comput. Struct. 79, 2547–2557 (2001). https://doi.org/10.1016/S0045-7949(01)00134-1

    Article  Google Scholar 

  26. Huang, Z.Y., Lü, C.F., Chen, W.Q.: Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations. Compos. Struct. 85, 95–104 (2008). https://doi.org/10.1016/j.compstruct.2007.10.010

    Article  Google Scholar 

  27. Amini, M.H., Soleimani, M., Rastgoo, A.: Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation. Smart Mater. Struct. 18, 085015 (2009). https://doi.org/10.1088/0964-1726/18/8/085015

    Article  Google Scholar 

  28. Thai, H.T., Choi, D.H.: Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates. Arch. Appl. Mech. 83, 1755–1771 (2013). https://doi.org/10.1007/S00419-013-0776-Z

    Article  MATH  Google Scholar 

  29. Xue, J., Wang, Y.: Free vibration analysis of a flat stiffened plate with side crack through the Ritz method. Arch. Appl. Mech. 89, 2089–2102 (2019). https://doi.org/10.1007/S00419-019-01565-6

    Article  Google Scholar 

  30. Atmane, H.A., Tounsi, A., Mechab, I., Bedia, E.A.A.: Free vibration analysis of functionally graded plates resting on Winkler–Pasternak elastic foundations using a new shear deformation theory. Int. J. Mech. Mater. Des. 6, 113–121 (2010). https://doi.org/10.1007/s10999-010-9110-x

    Article  Google Scholar 

  31. Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: Exact analytical solution for free vibration of functionally graded thin annular sector plates resting on elastic foundation. JVC/J. Vib. Control 18, 246–267 (2012). https://doi.org/10.1177/1077546311402530

    Article  MATH  Google Scholar 

  32. Chiker, Y., Bachene, M., Bouaziz, S., Guemana, M., Ben, A.M., Haddar, M.: Free vibration analysis of hybrid laminated plates containing multilayer functionally graded carbon nanotube-reinforced composite plies using a layer-wise formulation. Arch. Appl. Mech. 91, 463–485 (2021). https://doi.org/10.1007/S00419-020-01783-3

    Article  Google Scholar 

  33. Van Vinh, P., Belarbi, M.O., Avcar, M., Civalek, Ö.: An improved first-order mixed plate element for static bending and free vibration analysis of functionally graded sandwich plates. Arch. Appl. Mech. (2023). https://doi.org/10.1007/S00419-022-02359-Z/METRICS

    Article  Google Scholar 

  34. Farid, M., Zahedinejad, P., Malekzadeh, P.: Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. Mater. Des. 31, 2–13 (2010). https://doi.org/10.1016/j.matdes.2009.07.025

    Article  Google Scholar 

  35. Thai, H.T., Choi, D.H.: A refined plate theory for functionally graded plates resting on elastic foundation. Compos. Sci. Technol. 71, 1850–1858 (2011). https://doi.org/10.1016/j.compscitech.2011.08.016

    Article  Google Scholar 

  36. Thai, H.T., Choi, D.H.: A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Compos. Part B Eng. 43, 2335–2347 (2012). https://doi.org/10.1016/j.compositesb.2011.11.062

    Article  Google Scholar 

  37. Kamarian, S., Yas, M.H., Pourasghar, A.: Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations. J. Sandw. Struct. Mater. 15, 292–308 (2013). https://doi.org/10.1177/1099636213487363

    Article  Google Scholar 

  38. Dong, Y., Li, X., Gao, K., Li, Y., Yang, J.: Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn. 99, 981–1000 (2020). https://doi.org/10.1007/S11071-019-05297-8/METRICS

    Article  MATH  Google Scholar 

  39. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos Part B Eng. 145, 1–13 (2018). https://doi.org/10.1016/J.COMPOSITESB.2018.03.009

    Article  Google Scholar 

  40. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018). https://doi.org/10.1016/J.JSV.2018.08.036

    Article  Google Scholar 

  41. Dong, Y.H., He, L.W., Wang, L., Li, Y.H., Yang, J.: Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82–83, 466–478 (2018). https://doi.org/10.1016/J.AST.2018.09.037

    Article  Google Scholar 

  42. Fallah, A., Aghdam, M.M., Kargarnovin, M.H.: Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method. Arch. Appl. Mech. 83, 177–191 (2013). https://doi.org/10.1007/s00419-012-0645-1

    Article  MATH  Google Scholar 

  43. Chakraverty, S., Pradhan, K.K.: Free vibration of functionally graded thin rectangular plates resting on winkler elastic foundation with general boundary conditions using Rayleigh–Ritz method. Int. J. Appl. Mech. 06(04), 1450043 (2014). https://doi.org/10.1142/S1758825114500434

    Article  Google Scholar 

  44. Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014). https://doi.org/10.1016/j.ast.2014.04.005

    Article  Google Scholar 

  45. Akavci, S.S.: An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation. Compos. Struct. 108, 667–676 (2014). https://doi.org/10.1016/j.compstruct.2013.10.019

    Article  Google Scholar 

  46. Bodaghi, M., Saidi, A.R.: Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Arch. Appl. Mech. 81, 765–780 (2011). https://doi.org/10.1007/S00419-010-0449-0

    Article  MATH  Google Scholar 

  47. Malekzadeh, P., Karami, G.: Vibration of non-uniform thick plates on elastic foundation by differential quadrature method. Eng. Struct. 26, 1473–1482 (2004). https://doi.org/10.1016/j.engstruct.2004.05.008

    Article  Google Scholar 

  48. Malekzadeh, P.: Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Compos. Struct. 89, 367–373 (2009). https://doi.org/10.1016/j.compstruct.2008.08.007

    Article  Google Scholar 

  49. Benferhat, R., Hassaine Daouadji, T., Said, M.M.: Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory. Comptes Rendus Mec 344, 631–641 (2016). https://doi.org/10.1016/j.crme.2016.03.002

    Article  Google Scholar 

  50. Su, Z., Jin, G., Wang, X., Miao, X.: Modified Fourier–Ritz approximation for the free vibration analysis of laminated functionally graded plates with elastic restraints. Int. J. Appl. Mech. 7, 1–29 (2015). https://doi.org/10.1142/S1758825115500738

    Article  Google Scholar 

  51. Meksi, A., Benyoucef, S., Houari, M.S.A., Tounsi, A.: A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations. Struct. Eng. Mech. 53, 1215–1240 (2015). https://doi.org/10.12989/sem.2015.53.6.1215

    Article  Google Scholar 

  52. Ramu, I., Mohanty, S.C.: Free vibration and dynamic stability of functionally graded material plates on elastic foundation. Def. Sci. J. 65, 245–251 (2015). https://doi.org/10.14429/dsj.65.8621

    Article  Google Scholar 

  53. Özgan, K., Dalo, A.T.: Free vibration analysis of thick plates resting on Winkler elastic foundation. Chall. J. Struct. Mech. 1, 78–83 (2015). https://doi.org/10.20528/cjsmec.2015.06.015

    Article  Google Scholar 

  54. Moradi-Dastjerdi, R., Payganeh, G., Malek-Mohammadi, H.: Free vibration analyses of functionally graded CNT reinforced nanocomposite sandwich plates resting on elastic foundation. J. Solid Mech. 7, 158–172 (2015)

    Google Scholar 

  55. Ansari, R., Torabi, J., Shojaei, M.F.: Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos. Part B Eng. 109, 197–213 (2017). https://doi.org/10.1016/j.compositesb.2016.10.050

    Article  Google Scholar 

  56. Sobhani Aragh, B., Yas, M.H.: Three-dimensional free vibration analysis of four-parameter continuous grading fiber reinforced cylindrical panels resting on Pasternak foundations. Arch. Appl. Mech. 81, 1759–1779 (2011). https://doi.org/10.1007/S00419-011-0516-1

    Article  MATH  Google Scholar 

  57. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K., Tounsi, A.: A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation. Geomech. Eng. 12, 9–34 (2017). https://doi.org/10.12989/gae.2017.12.1.009

    Article  Google Scholar 

  58. Jung, W.Y., Park, W.T., Han, S.C.: Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87, 150–162 (2014). https://doi.org/10.1016/j.ijmecsci.2014.05.025

    Article  Google Scholar 

  59. Jung, W.Y., Han, S.C., Park, W.T.: Four-variable refined plate theory for forced-vibration analysis of sigmoid functionally graded plates on elastic foundation. Int. J. Mech. Sci. 111–112, 73–87 (2016). https://doi.org/10.1016/j.ijmecsci.2016.03.001

    Article  Google Scholar 

  60. Gupta, A., Talha, M., Chaudhari, V.K.: Natural frequency of functionally graded plates resting on elastic foundation using finite element method. Procedia Technol. 23, 163–170 (2016). https://doi.org/10.1016/j.protcy.2016.03.013

    Article  Google Scholar 

  61. Gupta, A.: Free vibration and flexural response of functionally graded plates resting on Winkler–Pasternak elastic foundations using nonpolynomial higher-order shear and normal deformation theory. Mech. Adv. Mater. Struct. 25(6), 523–538 (2018). https://doi.org/10.1080/15376494.2017.1285459

    Article  Google Scholar 

  62. Van Vinh, P.: Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak’s elastic foundations via a hybrid quasi-3D theory. Mech. Based Des. Struct. Mach. 0, 1–32 (2021). https://doi.org/10.1080/15397734.2021.1894948

    Article  Google Scholar 

  63. Parida, S., Mohanty, S.C.: Free vibration and buckling analysis of functionally graded plates resting on elastic foundation using higher order theory. Int. J. Struct. Stab. Dyn. 18, 1–21 (2018). https://doi.org/10.1142/S0219455418500499

    Article  MathSciNet  Google Scholar 

  64. Parida, S., Mohanty, S.C.: Free vibration analysis of rotating functionally graded material plate under nonlinear thermal environment using higher order shear deformation theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 2056–2073 (2019). https://doi.org/10.1177/0954406218777535

    Article  Google Scholar 

  65. Zhu, J., Lv, Z., Liu, H.: A novel iterative algorithm for natural frequency analysis of FG thin plates under interval uncertainty. Struct. Multidiscip. Optim. 60, 1389–1405 (2019). https://doi.org/10.1007/s00158-019-02267-x

    Article  MathSciNet  Google Scholar 

  66. Leung, A.Y.T.: Dynamic Stiffness and Substructures. vol. 53. (2013)

  67. Abrate, S.: Functionally graded plates behave like homogeneous plates. Compos. Part B Eng. 39, 151–158 (2008). https://doi.org/10.1016/j.compositesb.2007.02.026

    Article  Google Scholar 

  68. Reddy, J.N., Phan, N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J. Sound Vib. 98, 157–170 (1985). https://doi.org/10.1016/0022-460X(85)90383-9

    Article  MATH  Google Scholar 

  69. Reddy, K.S.K., Kant, T.: Three-dimensional elasticity solution for free vibrations of exponentially graded plates. J. Eng. Mech. 140, 04014047 (2014). https://doi.org/10.1061/(asce)em.1943-7889.0000756

    Article  Google Scholar 

  70. Xiang, Y., Wang, C.M., Kitipornchai, S.: Exact vibration solution for initially stressed mindlin plates on Pasternak foundations. Int. J. Mech. Sci. 36, 311–316 (1994). https://doi.org/10.1016/0020-7403(94)90037-X

    Article  MATH  Google Scholar 

  71. Matsunaga, H.: Vibration and stabilty of thick plates on elastic foundation. J. Eng. Mech. 126(1), 27–34 (2000). https://doi.org/10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  72. Singh, S.J., Harsha, S.P.: Nonlinear vibration analysis of sigmoid functionally graded sandwich plate with ceramic-FGM-metal layers. J. Vib. Eng. Technol. 8, 67–84 (2020). https://doi.org/10.1007/s42417-018-0058-8

    Article  Google Scholar 

  73. Williams, F.W., Wittrick, W.H., Williams, F.W.: A general algorithm for computing natural frequencies of elastic structures. Q. J. Mech. Appl. Math. XXIV, 263–284 (1971). https://doi.org/10.1093/qjmam/24.3.263

    Article  MathSciNet  MATH  Google Scholar 

  74. Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973). https://doi.org/10.1016/S0022-460X(73)80371-2

    Article  MATH  Google Scholar 

  75. Singh, B., Chakraverty, S.: Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables. J. Sound Vib. 173, 157–178 (1994). https://doi.org/10.1006/jsvi.1994.1224

    Article  MATH  Google Scholar 

  76. Bhat, R.B.: Iolo 102, 493–499 (1985)

    Google Scholar 

  77. Cheung, Y.K., Zhou, D.: The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh–Ritz method. J. Sound Vib. 223, 703–722 (1999). https://doi.org/10.1006/jsvi.1998.2160

    Article  Google Scholar 

  78. Liu, F.L., Liew, K.M.: Analysis of vibrating thick rectangular plates with mixed boundary constraints using differential quadrature element method. J. Sound Vib. 225, 915–934 (1999). https://doi.org/10.1006/jsvi.1999.2262

    Article  MATH  Google Scholar 

  79. Yang, J., Shen, H.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)

    Article  Google Scholar 

  80. Liew, K.M., Xiang, Y., Kitipornchai, S.: Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions. Comput. Struct. 49, 1–29 (1993). https://doi.org/10.1016/0045-7949(93)90122-T

    Article  Google Scholar 

  81. Nefovska-Danilovic, M., Petronijevic, M.: In-plane free vibration and response analysis of isotropic rectangular plates using the dynamic stiffness method. Comput. Struct. 152, 82–95 (2015). https://doi.org/10.1016/j.compstruc.2015.02.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Ranjan.

Ethics declarations

Conflict of interest

It is declared that there are no known competing financial interests or personal relationships to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The mathematical representation of \({D}_{FGM}\) and \({I}_{0}\)

$$\begin{array}{c}{\left({D}_{FGM}\right)}_{E}={\int }_{-h/2-{z}_{0}}^{h/2-{z}_{0}} \left({z}_{ns}^{2}\right){Q}_{11}\left({z}_{ns}\right)d{z}_{ns}={\int }_{-h/2}^{h/2} {Q}_{11}(z){\left(z-{z}_{0}\right)}^{2}dz\\ =\frac{{h}^{3}}{\mathrm{log}\left({E}_{c}/{E}_{m}\right)\left(1-{v}^{2}\right)}\left[\frac{{E}_{c}-{E}_{m}}{4}-\frac{{E}_{m}+{E}_{c}}{\mathrm{log}\left({E}_{c}/{E}_{m}\right)}+\frac{2\left({E}_{c}-{E}_{m}\right)}{\mathrm{log}{\left({E}_{c}/{E}_{m}\right)}^{2}}\right.\\ \left.+2\left(\frac{{z}_{0}}{h}\right)\left\{\frac{{E}_{m}+{E}_{c}}{2}-\frac{{E}_{c}-{E}_{m}}{\mathrm{log}\left({E}_{c}/{E}_{m}\right)}\right\}+{\left(\frac{{z}_{0}}{h}\right)}^{2}\left\{{E}_{c}-{E}_{m}\right\}\right]\\ =\frac{12{D}_{c}}{\mathrm{log}\left({E}_{rat}\right){E}_{rat}}\left[\frac{{E}_{rat}-1}{4}-\frac{1-{E}_{rat}}{\mathrm{log}\left({E}_{rat}\right)}+\frac{2\left({E}_{rat}-1\right)}{\mathrm{log}{\left({E}_{rat}\right)}^{2}}\right.\\ \left.+2\left(\frac{{z}_{0}}{h}\right)\left\{\frac{1+{E}_{rat}}{2}-\frac{1-{E}_{rat}}{\mathrm{log}\left({E}_{rat}\right)}\right\}+{\left(\frac{{z}_{0}}{h}\right)}^{2}\left\{{E}_{rat}-1\right\}\right]\end{array}$$
(A1)
$${\left({I}_{0}\right)}_{E}={\int }_{-h/2-{z}_{0}}^{h/2-{z}_{0}} \rho \left({z}_{ns}\right)d{z}_{ns}={\int }_{-h/2}^{h/2} \rho (z)dz=h{\rho }_{c}\left(\frac{{\rho }_{rat}-1}{\mathrm{log}\left({\rho }_{rat}\right)}\right)$$
(A2)

Appendix B

The mathematical expressions of DS matrix in Eq. (36)

This is given in the main body \({(S}_{vv}, {S}_{vm}, {F}_{vv}, {F}_{vm}, {S}_{mm}, {S}_{vn}).\)

Case 1:

$$\begin{aligned}{S}_{vv}& =\left({r}_{2m}{R}_{1}-{r}_{1m}{R}_{2}\right)\left({r}_{1m}{C}_{h2}{S}_{h1}+{r}_{2m}{C}_{h1}{S}_{h2}\right)/\Delta \\ {S}_{Dm} & ={r}_{1m}\left\{-{R}_{2}\left({C}_{h1}^{2}-{C}_{h1}{C}_{h2}+{S}_{h1}^{2}\right)-{R}_{2}{S}_{h1}{S}_{h2}\right\}\\ &\qquad-{r}_{2m}\left\{{R}_{2}{S}_{h1}{S}_{h2}+{R}_{1}\left(\left({C}_{h1}-{C}_{h2}\right){C}_{h2}+{S}_{h2}^{2}\right)\right\}/\Delta \\ {S}_{mm} & =\left({L}_{2}-{L}_{1}\right)\left({r}_{2m}{C}_{h2}{S}_{h1}-{r}_{1m}{C}_{h1}{S}_{h2}\right)/\Delta \\ {f}_{\nu v} & =\left({r}_{2m}{R}_{1}-{r}_{1m}{R}_{2}\right)\left({r}_{2m}{S}_{h2}-{r}_{1m}{S}_{h1}\right)/\Delta \\ {f}_{Dm} & =\left({C}_{h2}-{C}_{h1}\right)\left({r}_{2m}{R}_{1}-{r}_{1m}{R}_{2}\right)/\Delta \\ {f}_{mm} &=\left({L}_{1}-{L}_{2}\right)\left({r}_{2m}{S}_{h1}-{r}_{1m}{S}_{h2}\right)/\Delta ,\end{aligned}$$
(B1)

where \({r}_{im}, {S}_{hi}, {C}_{hi}, {S}_{i}, {C}_{i}, {L}_{i}, {R}_{i}\) (with suffix represents \(i=\mathrm{1,2}\)) are expressed in Eqs. (18), (31) and (33), respectively, and the \(\Delta \) defined by

$$\Delta ={S}_{h1}{S}_{h2}\left({r}_{1m}^{2}-{r}_{2m}^{2}\right)+{r}_{1m}{r}_{2m}\left\{{\left({C}_{h1}-{C}_{h2}\right)}^{2}-{S}_{h1}^{2}-{S}_{h2}^{2}\right\}$$
(B2)

Case 2:

$$\begin{aligned} {S}_{wv}& = \left({r}_{2m}{R}_{1}+{r}_{1m}{R}_{2}\right)\left({r}_{2m}{C}_{h1}{S}_{2}+{r}_{1m}{C}_{2}{S}_{h1}\right)/\Delta ,\\ {S}_{vm}& = -{r}_{2m}\left\{{R}_{1}\left({C}_{2}^{2}-{C}_{2}{C}_{h1}+{S}_{2}^{2}\right)-{R}_{2}{S}_{2}{S}_{h1}\right\}\\ &\quad -{r}_{1m}\left\{{R}_{1}{S}_{2}{S}_{h1}-{R}_{2}\left(\left({C}_{2}-{C}_{h1}\right){C}_{h1}+{S}_{h1}^{2}\right)\right\}/\Delta ,\\ {S}_{mm}&= \left({L}_{1}-{L}_{2}\right)\left({r}_{1m}{C}_{h1}{S}_{2}-{r}_{2m}{C}_{2}{S}_{h1}\right)/\Delta ,\\ {f}_{wV}& = \left({r}_{2m}{R}_{1}-{r}_{1m}{R}_{2}\right)\left({r}_{2m}{S}_{2}+{r}_{1m}{S}_{h1}\right)/\Delta ,\\ {f}_{vm}& = \left({C}_{h2}-{C}_{h1}\right)\left({r}_{2m}{R}_{1}-{r}_{1m}{R}_{2}\right)/\Delta \\ {f}_{mm}& = \left({L}_{1}-{L}_{2}\right)\left({r}_{2m}{S}_{h1}-{r}_{1m}{S}_{h2}\right)/\Delta ,\end{aligned}$$
(B3)

where \({r}_{im}, {S}_{hi}, {C}_{hi}, {S}_{i}, {C}_{i}, {L}_{i}, {R}_{i}\) (with suffix represents \(i=\mathrm{1,2}\)) are expressed in Eqs. (22), and (31), respectively, and the other given parameters can be expressed as:

$${R}_{i}={D}_{FGM}\left[{r}_{im}^{3}-{\alpha }^{2}{r}_{im}\left(2-v\right)\right]+{r}_{im}{I}_{2}{\omega }^{2},$$
$${L}_{i}={D}_{FGM}\left({r}_{im}^{3}-{\alpha }^{2}v\right)\mathrm{with }i=\mathrm{1,2}$$
(B4)

and \(\Delta \) given by

$$\Delta ={S}_{2}{S}_{h1}\left({r}_{1m}^{2}-{r}_{2m}^{2}\right)+{r}_{1m}{r}_{2m}\left\{{\left({C}_{2}-{C}_{h1}\right)}^{2}+{S}_{2}^{2}-{S}_{h1}^{2}\right\}$$
(B5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, M., Dwivedi, S., Mishra, P. et al. Exponential functionally graded plates resting on Winkler–Pasternak foundation: free vibration analysis by dynamic stiffness method. Arch Appl Mech 93, 2483–2509 (2023). https://doi.org/10.1007/s00419-023-02392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02392-6

Keywords

Navigation